如圖所示,AC為的直徑,D為的中點(diǎn),E為BC的中點(diǎn).
(Ⅰ)求證:AB∥DE;
(Ⅱ)求證:2AD·CD=AC·BC.
(Ⅰ)詳見解析;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)通過連接BD,通過證明與同一條直線垂直的兩條直線垂直的思路進(jìn)行證明線線平行;(Ⅱ)通過證明△DAC∽△ECD,
試題解析:(Ⅰ)連接BD,因?yàn)镈為的中點(diǎn),所以BD=DC.因?yàn)镋為BC的中點(diǎn),所以DE⊥BC.
因?yàn)锳C為圓的直徑,所以∠ABC=90°,所以AB∥DE. 5分
(Ⅱ)因?yàn)镈為的中點(diǎn),所以∠BAD=∠DAC,
又∠BAD=∠DCB,則∠DAC=∠DCB.
又因?yàn)锳D⊥DC,DE⊥CE,所以△DAC∽△ECD.
所以=,AD·CD=AC·CE,2AD·CD=AC·2CE,
因此2AD·CD=AC·BC. 10分
考點(diǎn):1.線線平行的證明;2.三角形相似的證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中,,,為的中點(diǎn),分別在線段上,且交于,把沿折起,如下圖所示,
(1)求證:平面;
(2)當(dāng)二面角為直二面角時,是否存在點(diǎn),使得直線與平面所成的角為,若存在求的長,若不存在說明理由.
查看答案和解析>>
科目:解答題
來源: 題型:如圖(1),等腰直角三角形的底邊,點(diǎn)在線段上,于,現(xiàn)將沿折起到的位置(如圖(2)).
(Ⅰ)求證:;
(Ⅱ)若,直線與平面所成的角為,求長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知為圓的直徑,點(diǎn)為線段上一點(diǎn),且,點(diǎn)為圓上一點(diǎn),且.點(diǎn)在圓所在平面上的正投影為點(diǎn),.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,
(I)若為的中點(diǎn),求證:平面平面;
(II)若為線段上一點(diǎn),且二面角的大小為,試確定的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖已知:菱形所在平面與直角梯形所在平面互相垂直,,點(diǎn)分別是線段的中點(diǎn).
(1)求證:平面平面;
(2)點(diǎn)在直線上,且//平面,求平面與平面所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中, ,,,點(diǎn)是的中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ)設(shè)點(diǎn)在線段上,,且使直線和平面所成的角的正弦值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com