如圖,三棱錐中,,
 
(Ⅰ)求證:;
(Ⅱ)若,的中點(diǎn),求與平面所成角的正切值  

(Ⅰ)證明略;(Ⅱ) 

解析試題分析:(Ⅰ)根據(jù)直線與平面垂直的判定定理,只要找到和平面中兩條相交直線垂直就可以證明直線和平面垂直,那么再由平面和平面垂直的判定定理可知 ,證明中要把條件到結(jié)論敘述清楚;(Ⅱ)先根據(jù)這個條件做輔助線構(gòu)造出所求的線面角,再在三角形中根據(jù)解三角形的方法求得線面角的正切值,一定要注意線面角要找準(zhǔn),不能亂構(gòu)造
試題解析:解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/c/1amec4.png" style="vertical-align:middle;" />,所以                    2分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/e/csorq1.png" style="vertical-align:middle;" />,即 
所以                   4分
,所以                       6分
(Ⅱ)取中點(diǎn),連,則 

,所以,連結(jié),
就是與平面所成的角                   10分
設(shè),則,
所以                          15分
考點(diǎn):1、直線與平面垂直的判定;2、平面與平面垂直的判定;3、直線與平面所成的角

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,,的中點(diǎn).

(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,點(diǎn)D是AB的中點(diǎn),

求證:(1); (2)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖示,在底面為直角梯形的四棱椎P   ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.

(1)求證:BD^平面PAC ;
(2)求二面角A—PC—D的正切值;
(3)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,四邊形是菱形,,E為PB的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正三棱柱中,點(diǎn)的中點(diǎn).

(Ⅰ)求證: 平面
(Ⅱ)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)M是A1B的中點(diǎn),點(diǎn)N是B1C的中點(diǎn),連接MN

(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD中,,,,的中點(diǎn).

(1)求證:;
(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,AC為的直徑,D為的中點(diǎn),E為BC的中點(diǎn).

(Ⅰ)求證:AB∥DE;
(Ⅱ)求證:2AD·CD=AC·BC.

查看答案和解析>>

同步練習(xí)冊答案