科目: 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行12m到達(dá)Q點(diǎn)時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個路燈的高度都是9.6m.
(1)求兩個路燈之間的距離;
(2)當(dāng)王華同學(xué)走到路燈BD處時,他在路燈AC下的影子長是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:矩形OABC的頂點(diǎn)O在平面直角坐標(biāo)系的原點(diǎn),邊OA、OC分別在x、y軸的正半軸上,且OA=3cm,OC=4cm,點(diǎn)M從點(diǎn)A出發(fā)沿AB向終點(diǎn)B運(yùn)動,點(diǎn)N從點(diǎn)C出發(fā)沿CA向終點(diǎn)A運(yùn)動,點(diǎn)M、N同時出發(fā),且運(yùn)動的速度均為1cm/秒,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)即停止運(yùn)動.設(shè)運(yùn)動的時間為t秒.
(1)當(dāng)點(diǎn)N運(yùn)動1秒時,求點(diǎn)N的坐標(biāo);(提示:過N作x軸y軸垂線,垂足分別為D,ECN:CA=CE:CO=NE:OA)
(2)試求出多邊形OAMN的面積S與t的函數(shù)關(guān)系式;
(3)t為何值時,以△OAN的一邊所在直線為對稱軸翻折△OAN,翻折前后的兩個三角形所組成的四邊形為菱形?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點(diǎn)G,連接DG、BF,給出下列結(jié)論:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(-5,8),B(3,0).
(1)如圖1,求∠ABO的度數(shù);
(2)如圖2,點(diǎn)C在y軸的負(fù)半軸上,△BOC的面積為,過點(diǎn)C作CD∥AB交x軸于點(diǎn)D,點(diǎn)P為直線CD上一點(diǎn),求△PAB的面積;
(3)如圖3,在(2)的條件下,當(dāng)P在第二象限時,過點(diǎn)P作AB的垂線交x軸于點(diǎn)E,點(diǎn)F為x軸上一點(diǎn),連接PF,點(diǎn)G為EP延長線上一點(diǎn),連接OG,若OG=FP,∠EFP+∠PGO=45°,EF=11,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC中,∠BAC=60°,點(diǎn)D在AB上,點(diǎn)E,F在BC上,∠ADE=60°,∠BAF=2∠BED.
(1)如圖1,求證:AF=AC;
(2)如圖2,當(dāng)E為BC的中點(diǎn)時,求證:AD-BD=AF;
(3)如圖3,在(2)的條件下,在AB上取點(diǎn)G,使∠ACG=∠BED,連接CG交AF于點(diǎn)M,若BD=3,FM=8,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)D、E分別在AB、BC上,BD=CE,連接AE,CD交于點(diǎn)O
(1)如圖1,求證:CD=AE;
(2)如圖2,作等邊△AEF,連接BF,DF.直接寫出圖2中所有120度的角.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,AD是△ABC斜邊BC上的高,E是AD上一點(diǎn),連接EC,過點(diǎn)E作EF⊥EC交射線BA于點(diǎn)F.AC、EF交于點(diǎn)G,△ECG與△AFG的面積差為1,則線段AE=___.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,把△ABD沿AD折疊后,使得點(diǎn)B落在點(diǎn)E處,連接CE,若∠DBE=15°,則∠ADC的度數(shù)為________
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=2∠C,AP和BQ分別為∠BAC和∠ABC的角平分線,若△ABQ的周長為18,BP=4,則AB的長為_____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com