【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分∠ABC PBD上一點(diǎn),過(guò)點(diǎn)PPM⊥AD,PN⊥CD,垂足分別為M、N.

1)求證:∠ADB=∠CDB;

(2)∠ADC=90°,求證:四邊形MPND是正方形.

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

1)根據(jù)角平分線的性質(zhì)和全等三角形的判定方法證明ABD≌△CBD,由全等三角形的性質(zhì)即可得到:∠ADB=CDB;
2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據(jù)兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.

證明:(1)∵對(duì)角線BD平分∠ABC,

∴∠ABD=CBD,

ABDCBD

AB=CB

ABD=CBD

BD=BD

∴△ABD≌△CBD(SAS)

∴∠ADB=CDB

(2)PMAD,PNCD

∴∠PMD=PND=90,

∵∠ADC=90°

∴四邊形MPND是矩形,

∵∠ADB=CDB,

∴∠ADB=45°,

PM=MD,

∴四邊形MPND是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DEBC,下面是王華同學(xué)的推導(dǎo)過(guò)程﹐請(qǐng)你幫他在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.

證明:

∵∠1+∠2﹦180(已知),

∠1﹦∠4 _________________,

∴∠2﹢_____﹦180°.

EHAB___________________________________

∴∠B﹦∠EHC________________________________

∵∠3﹦∠B(已知)

∴ ∠3﹦∠EHC____________________

DEBC__________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:(1)當(dāng)線段AB平行于投影面P時(shí),它的正投影是線段A1B1,線段與它的投影的大小關(guān)系為AB

___A1B1;

(2)當(dāng)線段AB傾斜于投影面P時(shí),它的正投影是線段A2B2,線段與它的投影的大小關(guān)系為AB___A2B2;

(3)當(dāng)線段AB垂直于投影面P時(shí),它的正投影是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一張對(duì)面互相平行的紙條折成如圖所示那樣,EF是折痕,若∠EFB=32°則下列結(jié)論正確的有( )

(1)CEF=32°(2)AEC=116°(3)BGE=64°(4)BFD=116°.

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8×8的正方形網(wǎng)格中,有一個(gè)RtAOB,點(diǎn)O是直角頂點(diǎn),點(diǎn)O、A、B分別在網(wǎng)格中小正方形的頂點(diǎn)上,請(qǐng)按照下面要求在所給的網(wǎng)格中畫圖.

(1)在圖1中,將AOB先向右平移3個(gè)單位,再向上平移2個(gè)單位,得到A1O1B1,畫出平移后的A1O1B1;(其中點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A1,O1,B1

(2)在圖2中,AOBA2O2B2是關(guān)于點(diǎn)P對(duì)稱的圖形,畫出A2O2B2,連接BA2,并直接寫出tanA2BO的值.(其中A,O,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A2,O2,B2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】眾所周知,水的污染越來(lái)越嚴(yán)重,日益影響著人類的身心健康,而人們的安全飲水意識(shí)仍有待提高.已知某品牌型號(hào)Ⅰ凈水器的市場(chǎng)售價(jià)為2000/臺(tái),型號(hào)Ⅱ凈水器的市場(chǎng)售價(jià)為1800/臺(tái).為了保護(hù)我區(qū)市民的安全飲水,推動(dòng)北碚區(qū)創(chuàng)建國(guó)家級(jí)衛(wèi)生區(qū)復(fù)審工作,啟動(dòng)了“安全飲水北碚行”活動(dòng),此兩種型號(hào)的凈水器可獲得13%的財(cái)政補(bǔ)貼.

(1)某商場(chǎng)在啟動(dòng)活動(dòng)前一個(gè)月共售出此兩種凈水器960臺(tái),啟動(dòng)活動(dòng)后的第一個(gè)月型號(hào)Ⅰ和型號(hào)Ⅱ凈水器的銷量分別比上月增長(zhǎng)30%、25%,這個(gè)月這兩種凈水器共售出1228臺(tái).啟動(dòng)活動(dòng)前一個(gè)月此兩種型號(hào)的凈水器銷量各為多少臺(tái)?

(2)在啟動(dòng)活動(dòng)前區(qū)政府打算用25000元為天府鎮(zhèn)敬老院購(gòu)買該兩種型號(hào)的凈水器,并計(jì)劃恰好全部用完此款.

①原計(jì)劃所購(gòu)買的型號(hào)Ⅰ和型號(hào)Ⅱ凈水器各多少臺(tái)?

②活動(dòng)啟動(dòng)后,在不增加區(qū)政府實(shí)際負(fù)擔(dān)的情況下,能否多購(gòu)買兩臺(tái)型號(hào)Ⅱ凈水器?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo).

2)求出△ABC的面積.

3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△ABC′,在圖中畫出△ABC變化位置。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰直角三角板的一個(gè)銳角頂點(diǎn)與正方形ABCD的頂點(diǎn)A重合,將此三角板繞A點(diǎn)旋轉(zhuǎn)時(shí),兩邊分別交直線BC,CD于點(diǎn)M、N.

(1)如圖①,當(dāng)M、N分別在邊BC,CD上時(shí),作AE垂直于AN,交CB的延長(zhǎng)線于點(diǎn)E,求證:ABE≌△ADN;

(2)如圖②,當(dāng)M、N分別在邊CB,DC的延長(zhǎng)線上時(shí),求證:MN+BM=DN;

(3)如圖③,當(dāng)M、N分別在邊CB,DC的延長(zhǎng)線上時(shí),作直線BD交直線AM、ANP、Q兩點(diǎn),若MN=10,CM=8,求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知長(zhǎng)方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),AC分別在xy軸的正半軸上,頂點(diǎn)B8,6),直線y=-x+b經(jīng)過(guò)點(diǎn)ABCD、交y軸于點(diǎn)M,點(diǎn)PAD的中點(diǎn),直線OPAB于點(diǎn)E

1)求點(diǎn)D的坐標(biāo)及直線OP的解析式;

2)求△ODP的面積,并在直線AD上找一點(diǎn)N,使△AEN的面積等于△ODP的面積,請(qǐng)求出點(diǎn)N的坐標(biāo)

3)在x軸上有一點(diǎn)Tt,0)(5t8),過(guò)點(diǎn)Tx軸的垂線,分別交直線OE、AD于點(diǎn)FG,在線段AE上是否存在一點(diǎn)Q,使得△FGQ為等腰直角三角形,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及相應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案