【題目】8×8的正方形網(wǎng)格中,有一個(gè)RtAOB,點(diǎn)O是直角頂點(diǎn),點(diǎn)O、A、B分別在網(wǎng)格中小正方形的頂點(diǎn)上,請(qǐng)按照下面要求在所給的網(wǎng)格中畫圖.

(1)在圖1中,將AOB先向右平移3個(gè)單位,再向上平移2個(gè)單位,得到A1O1B1,畫出平移后的A1O1B1;(其中點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A1,O1,B1

(2)在圖2中,AOBA2O2B2是關(guān)于點(diǎn)P對(duì)稱的圖形,畫出A2O2B2,連接BA2,并直接寫出tanA2BO的值.(其中A,O,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A2,O2,B2

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)利用網(wǎng)格特點(diǎn)和平移的性質(zhì),畫出點(diǎn)的對(duì)應(yīng)點(diǎn)

從而得到
(2)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì),畫出點(diǎn)的對(duì)應(yīng)點(diǎn) 從而得到然后根據(jù)正切的定義求的值.

試題解析:(1)如圖1,為所作;

(2)如圖2,為所作,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):

如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這種圖形叫做規(guī)形圖,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?請(qǐng)解決以下問題:

(1)觀察規(guī)形圖,試探究∠BPC與∠A、∠B、∠C之間的關(guān)系,并說明理由;

(2)請(qǐng)你直接利用以上結(jié)論,解決以下問題:

①如圖2:已知△ABCBP平分∠ABC,CP平分∠ACB,直接寫出∠BPC與∠A之間存在的等量關(guān)系為:

遷移運(yùn)用:如圖3:在△ABC中,∠A=80°,點(diǎn)O是∠ABC,∠ACB角平分線的交點(diǎn),點(diǎn)P是∠BOC,∠OCB角平分線的交點(diǎn),若∠OPC=100°,則∠ACB的度數(shù)

②如圖4:若D點(diǎn)是△ABC內(nèi)任意一點(diǎn),BP平分∠ABD,CP平分∠ACD.直接寫出∠BDC、∠BPC、∠A之間存在的等量關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時(shí)不能擋光.如圖,某舊樓的一樓窗臺(tái)高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時(shí)陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請(qǐng)問新建樓房最高多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點(diǎn)M,EF與AC交于點(diǎn)N,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),伴隨點(diǎn)P的運(yùn)動(dòng),矩形PEFG在射線AB上滑動(dòng);動(dòng)點(diǎn)K從點(diǎn)P出發(fā)沿折線PE﹣﹣EF以每秒1個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng).點(diǎn)P、K同時(shí)開始運(yùn)動(dòng),當(dāng)點(diǎn)K到達(dá)點(diǎn)F時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、K運(yùn)動(dòng)的時(shí)間是t秒(t>0).

(1)當(dāng)t=1時(shí),KE=_____,EN=_____;

(2)當(dāng)t為何值時(shí),△APM的面積與△MNE的面積相等?

(3)當(dāng)點(diǎn)K到達(dá)點(diǎn)N時(shí),求出t的值;

(4)當(dāng)t為何值時(shí),△PKB是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣2,3),B(﹣6,0),C(﹣1,0).

1)將ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°,畫出圖形,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)_____;

2)將ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A″的坐標(biāo)_____

3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D所有可能的坐標(biāo)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分∠ABC, PBD上一點(diǎn),過點(diǎn)PPM⊥AD,PN⊥CD,垂足分別為MN.

1)求證:∠ADB=∠CDB;

(2)∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人分別從兩地相向而行,他們距地的距離與時(shí)間的關(guān)系如圖所示,下列說法錯(cuò)誤的是( )

A.甲的速度是B.甲出發(fā)4.5小時(shí)后與乙相遇

C.乙比甲晚出發(fā)2小時(shí)D.乙的速度是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩張完全相同的矩形紙片ABCD、FBED按如圖方式放置,BD為重合的對(duì)角線.重疊部分為四邊形DHBG.

(1)試判斷四邊形DHBG為何種特殊的四邊形,并說明理由;

(2)若AB=8,AD=4,求四邊形DHBG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某品牌轎車以勻速行駛的耗油情況,進(jìn)行了試驗(yàn):該轎車油箱加滿后,以的速度勻速行駛,數(shù)據(jù)記錄如下表:

轎車行駛的路程(千米)

0

100

200

300

油箱剩余油量(升)

50

41

32

23

1)上表反映了哪兩個(gè)變量之間的關(guān)系?自變量、因變量各是什么?

2)油箱剩余油量(升)與轎車行駛的路程(千米)之間的關(guān)系式是什么?

3)若小明將油箱加滿后,駕駛該轎車以的速度勻速?gòu)?/span>地駛往地,到達(dá)地時(shí)油箱剩余油量為5升,求兩地之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案