【題目】已知等腰直角三角板的一個銳角頂點與正方形ABCD的頂點A重合,將此三角板繞A點旋轉時,兩邊分別交直線BC,CD于點M、N.
(1)如圖①,當M、N分別在邊BC,CD上時,作AE垂直于AN,交CB的延長線于點E,求證:△ABE≌△ADN;
(2)如圖②,當M、N分別在邊CB,DC的延長線上時,求證:MN+BM=DN;
(3)如圖③,當M、N分別在邊CB,DC的延長線上時,作直線BD交直線AM、AN于P、Q兩點,若MN=10,CM=8,求AP的長.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】試題分析:由同角的余角相等得到一對銳角相等,再由一對直角相等,又正方形的邊長相等,利用ASA即可得到≌
在上截取連接首先證明≌再證為等腰直角三角形,即可得到結論;
連接AC,在中,由MN和CM的長,利用勾股定理求出CN的長,根據(jù)圖3的結論等量代換即可求出BC的長,從而利用勾股定理求出AC的長,證明 且相似比為 在中,利用勾股定理求出AN的長,代入比例式即可求出AP的長.
試題解析:如圖1,
∵AE垂直于AN,
∵四邊形ABCD是正方形,
,
又
∴≌(ASA);
(2)證明:如圖②,在上截取連接
∴≌
為等腰直角三角形,
∴AN為MG的垂直平分線,
,即
(3)如圖③,連接AC,同(2),證得
即
即,
在中,
根據(jù)勾股定理得即
又
在中,
根據(jù)勾股定理得
解得
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC.
(1)求證:△BDG≌△ADC.
(2)分別取BG、AC的中點E、F,連接DE、DF,則DE與DF有何關系,并說明理由.
(3)在(2)的條件下,連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC, P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M、N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農場去年大豆和小麥的總產量為200噸,今年大豆和小麥的總產量為225噸,其中大豆比去年増產5%,小麥比去年増產15%,求該農場今年大豆和小麥的產量各是多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩張完全相同的矩形紙片ABCD、FBED按如圖方式放置,BD為重合的對角線.重疊部分為四邊形DHBG.
(1)試判斷四邊形DHBG為何種特殊的四邊形,并說明理由;
(2)若AB=8,AD=4,求四邊形DHBG的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經過第2011次運動后,動點P的坐標是____________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當正方形ADEF繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當正方形ADEF繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點G.
①求證:BD⊥CF; ②當AB=4,AD=時,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+6分別與x軸,y軸交于點B,C且與直線y=x交于點A,點D是直線OA上的點,當△ACD為直角三角形時,則點D的坐標為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象分別與x軸,y軸的正半軸交于點E、F,一次函數(shù)y=kx﹣4的圖象與直線EF交于點A(m,2),且交于x軸于點P,
(1)求m的值及點E、F的坐標;
(2)求△APE的面積;
(3)若B點是x軸上的動點,問在直線EF上,是否存在點Q(Q與A不重合),使△BEQ與△APE全等?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com