【題目】如圖,在平面直角坐標(biāo)系中,直線:分別與x軸、y軸交于點(diǎn)B、C,且與直線:交于點(diǎn)A.
分別求出點(diǎn)A、B、C的坐標(biāo);
直接寫出關(guān)于x的不等式的解集;
若D是線段OA上的點(diǎn),且的面積為12,求直線CD的函數(shù)表達(dá)式.
【答案】 A,,;; .
【解析】
(1)根據(jù)依次函數(shù)關(guān)系式,分別令x=0,y=0,即可求出一次函數(shù)與坐標(biāo)軸的交點(diǎn),即
B、C的坐標(biāo),然后再聯(lián)立兩個一次函數(shù)關(guān)系式為二元一次方程組,即可求解點(diǎn)A的坐標(biāo),
(2)直接解不等式即可求解,
(3) 設(shè),根據(jù)的面積為12,可得:,解得:,即,
再設(shè)直線CD的函數(shù)表達(dá)式是,把,代入得:,
解得:,因此直線CD的函數(shù)表達(dá)式為:.
直線:,
當(dāng)時,,
當(dāng)時,,
則,,
解方程組:得:,
則,
故A,,,
關(guān)于x的不等式的解集為:,
設(shè),
的面積為12,
,
解得:,
,
設(shè)直線CD的函數(shù)表達(dá)式是,把,代入得:,
解得:,
直線CD的函數(shù)表達(dá)式為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC的外接圓⊙O的半徑為2,過點(diǎn)C作∠ACD=∠ABC,交BA的延長線于點(diǎn)D,若∠ABC=45°,∠D=30°.
(1)求證:CD是⊙O的切線;
(2)求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象上有一動點(diǎn)A,連接AO并延長交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動時,點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動,tan∠CAB=2,則關(guān)于x的方程x2﹣5x+k=0的解為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大酒店客房部有三人間、雙人間和單人間客房,收費(fèi)數(shù)據(jù)如下表(例如三人間普通間客房每人每天收費(fèi)50元).為吸引客源,在“十一黃金周”期間進(jìn)行優(yōu)惠大酬賓,凡團(tuán)體入住一律五折優(yōu)惠.一個50人的旅游團(tuán)在十月二號到該酒店住宿,租住了一些三人間、雙人間普通客房,并且每個客房正好住滿,一天一共花去住宿費(fèi)1510元.
普通間(元/人/天) | 豪華間(元/人/天) | 貴賓間(元/人/天) | |
三人間 | 50 | 100 | 500 |
雙人間 | 70 | 150 | 800 |
單人間 | 100 | 200 | 1500 |
(1)三人間、雙人間普通客房各住了多少間?
(2)設(shè)三人間共住了x人,則雙人間住了 人,一天一共花去住宿費(fèi)用y元表示,寫出y與x的函數(shù)關(guān)系式;
(3)如果你作為旅游團(tuán)團(tuán)長,你認(rèn)為上面這種住宿方式是不是費(fèi)用最少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,F是AD的中點(diǎn),延長BC到點(diǎn)E,使CE=BC,連結(jié)DE,CF。
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=4,AD=6,∠B=60°,求DE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買一批單價為20元的日用品,如果以單價30元銷售,那么半月內(nèi)可以售出400件.據(jù)銷售經(jīng)驗(yàn),提高銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高一元,銷售量相應(yīng)減少20件.如何提高銷售價,才能在半月內(nèi)獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰RtABC 中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點(diǎn)P,連接PC,若△ABC的面積為8cm2,則△BPC的面積為( )
A. 4cm2 B. 5cm2 C. 6cm2 D. 7cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E是BC邊上的點(diǎn),連接AD,AE,以△ADE的邊AE所在直線為對稱軸作△ADE的軸對稱圖形△AD′E,連接D′C,若BD=CD′;
(1)求證:△ABD≌△ACD′;
(2)若∠BAC=120°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖象與過、的直線交于點(diǎn)P,與x軸、y軸分別相交于點(diǎn)C和點(diǎn)D.
求直線AB的解析式及點(diǎn)P的坐標(biāo);
連接AC,求的面積;
設(shè)點(diǎn)E在x軸上,且與C、D構(gòu)成等腰三角形,請直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com