【題目】函數(shù)y=x2+bx+c與y=x的圖像如圖所示,有以下結(jié)論:
①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0.
其中正確的個(gè)數(shù)為( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】B
【解析】解:∵函數(shù)y=x2+bx+c與x軸無(wú)交點(diǎn),
∴b2﹣4ac<0;
故①錯(cuò)誤;
當(dāng)x=1時(shí),y=1+b+c=1,
故②錯(cuò)誤;
∵當(dāng)x=3時(shí),y=9+3b+c=3,
∴3b+c+6=0;
③正確;
∵當(dāng)1<x<3時(shí),二次函數(shù)值小于一次函數(shù)值,
∴x2+bx+c<x,
∴x2+(b﹣1)x+c<0.
故④正確.
故選B
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.
(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的O交BC于點(diǎn)D,過點(diǎn)D作EF⊥AC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.
(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)如果AB=5,BC=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了美觀,在加工太陽(yáng)鏡時(shí)將下半部分輪廓制作成拋物線的形狀(如圖所示),對(duì)應(yīng)的兩條拋物線關(guān)于y軸對(duì)稱,AE∥x軸,AB=4cm,最低點(diǎn)C在x軸上,高CH=1cm,BD=2cm,則右輪廓DFE所在拋物線的解析式為(
A.y= (x+3)2
B.y= (x﹣3)2
C.y=﹣ (x+3)2
D.y=﹣ (x﹣3)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊由長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y= (x>0)的圖像經(jīng)過線段OA的端點(diǎn)A,O為原點(diǎn),作AB⊥x軸于點(diǎn)B,點(diǎn)B的坐標(biāo)為(2,0),tan∠AOB= ,將線段AB沿x軸正方向平移到線段DC的位置,反比例函數(shù)y= (x>0)的圖像恰好經(jīng)過DC的中點(diǎn)E.

(1)求k的值和直線AE的函數(shù)表達(dá)式;
(2)若直線AE與x軸交于點(diǎn)M、與y軸交于點(diǎn)N,請(qǐng)你探索線段AN與線段ME的大小關(guān)系,寫出你的結(jié)論并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,∠B=60°,D為AB的中點(diǎn),∠EDF=90°,DE交AC于點(diǎn)G,DF經(jīng)過點(diǎn)C.

(1)求∠ADE的度數(shù);
(2)如圖2,將圖1中的∠EDF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)角α(0°<α<60°),旋轉(zhuǎn)過程中的任意兩個(gè)位置分別記為∠E1DF1 , ∠E2DF2 , DE1交直線AC于點(diǎn)P,DF1交直線BC于點(diǎn)Q,DE2交直線AC于點(diǎn)M,DF2交直線BC于點(diǎn)N,求 的值;
(3)若圖1中∠B=β(60°<β<90°),(2)中的其余條件不變,判斷 的值是否為定值?如果是,請(qǐng)直接寫出這個(gè)值(用含β的式子表示);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明有5張寫著不同數(shù)字的卡片,請(qǐng)你按要求抽出卡片,完成下列問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,乘積的最大值是   ;

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是   ;

(3)從中取出4張卡片.用學(xué)過的計(jì)算方法.使計(jì)算結(jié)果為24,請(qǐng)寫出這個(gè)運(yùn)算式.(至少寫出兩個(gè))

查看答案和解析>>

同步練習(xí)冊(cè)答案