精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的O交BC于點D,過點D作EF⊥AC于點E,交AB的延長線于點F.
(1)判斷直線DE與⊙O的位置關系,并說明理由;
(2)如果AB=5,BC=6,求DE的長.

【答案】
(1)解:相切,理由如下:

連接AD,OD,

∵AB為⊙O的直徑,

∴∠ADB=90°.

∴AD⊥BC.

∵AB=AC,

∴CD=BD= BC.

∵OA=OB,

∴OD∥AC.

∴∠ODE=∠CED.

∵DE⊥AC,

∴∠ODE=∠CED=90°.

∴OD⊥DE.

∴DE與⊙O相切.


(2)解:由(1)知∠ADC=90°,

∴在Rt△ADC中,由勾股定理得

AD= =4.

∵SACD= ADCD= ACDE,

×4×3= ×5DE.

∴DE=


【解析】(1)連接AD,OD,根據已知條件證得OD⊥DE即可;(2)根據勾股定理計算即可.
【考點精析】利用等腰三角形的性質和直線與圓的三種位置關系對題目進行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若關于x的一元二次方程x2﹣3x+p=0(p≠0)的兩個不相等的實數根分別為a和b,且a2﹣ab+b2=18,則 + 的值是(
A.3
B.﹣3
C.5
D.﹣5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=x﹣1與反比例函數y= 的圖象交于A、B兩點,與x軸交于點C,已知點A的坐標為(﹣1,m).
(1)求反比例函數的解析式;
(2)若點P(n,﹣1)是反比例函數圖象上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑, = ,且AB=5,BD=4,求弦DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=ax2﹣4ax+b與x軸的一個交點A的坐標為(3,0),與y軸交于點C.
(1)求拋物線與x軸的另一個交點B的坐標;
(2)當a=﹣1時,將拋物線向上平移m個單位后經過點(5,﹣7).
①求m的值及平移前、后拋物線的頂點P、Q的坐標.
②設平移后拋物線與y軸交于點D,問:在平移后的拋物線上是否存在點E,使得△ECD的面積是△EPQ的3倍?若存在,請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是(
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當直線DF與⊙O相切時,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數y=x2+bx+c與y=x的圖像如圖所示,有以下結論:
①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當1<x<3時,x2+(b﹣1)x+c<0.
其中正確的個數為( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中點M,連接MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.

(1)試直接寫出點D的坐標;
(2)已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連接OP.
①若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標;
②試問在拋物線的對稱軸上是否存在一點T,使得|TO﹣TB|的值最大?

查看答案和解析>>

同步練習冊答案