【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(-2,0),(x0,0),1<x0<2,與y軸的負半軸相交,且交點在(0,-2)的上方,下列結論:
①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正確結論是 _________(填正確序號)
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)營甲、乙兩種商品,其進價和售價如下表:
甲 | 乙 | |
進價(元/件) | 15 | 35 |
售價(元/件) | 20 | 45 |
已知該商店購進了甲、乙兩種商品共160件.
(1)若商店在銷售完這批商品后要獲利1000元,則應分別購進甲、乙兩種商品各多少件?
(2)若商店的投入資金少于4300元,且要在售完這批商品后獲利不少于1250元,則共有幾種購貨的方案?其中,哪種購貨方案獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解:課外興趣小組活動時,老師提出了如下問題:
在△ABC中,AB=9,AC=5,求BC邊上的中線AD的取值范圍。
小明在組內經(jīng)過合作交流,得到了如下的解決方法(如圖1):
①延長AD到Q,使得DQ=AD;
②再連接BQ,把AB、AC、2AD集中在△ABQ中;
③利用三角形的三邊關系可得4<AQ<14,則AD的取值范圍是_____________。
感悟:解題時,條件中若出現(xiàn)“中點”“中線”等條件,可以考慮倍長中線,構造全等三角形,把分散的己知條件和所求證的結論集中到同一個三角形中。
(2)請你寫出圖1中AC與BQ的位置關系并證明。
(3)思考:已知,如圖2,AD是△ABC的中線,AB=AE,AC=AF,∠BAE=∠FAC=90°。試探究線段AD與EF的數(shù)量和位置關系并加以證明。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解社區(qū)居民最喜歡的支付方式,某興趣小組對龍湖社區(qū)內20~60歲年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調查的總人數(shù).
(2)補全條形統(tǒng)計圖.
(3)該社區(qū)中20~60歲的居民約4000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
如圖1,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于點、.我們可以發(fā)現(xiàn):反比例函數(shù)的圖象是一個關于原點中心對稱的圖形.
(1)填空: , , , ;
(2)利用所給函數(shù)圖象,寫出不等式的解集 ;
(3)如圖2,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于點、.試說明以、、、為頂點的四邊形一定是平行四邊形,但不可能是正方形;
(4)如圖3,當點在點的左上方時,過作直線軸于點,過點作直線軸于點,交直線于點,若四邊形的面積為.求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AD是△ABC的中線,AE⊥AB,AF⊥AC,且AE=AB,AF=AC,AD=3,AB=4.
(1)求AC長度的取值范圍;
(2)求EF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請你畫出一個以BC為底邊的等腰ΔABC,使底邊上的高AD=BC.
(1)求tanB和 sinB的值;
(2)在你所畫的等腰ΔABC中設底邊BC=5米,求腰上的高BE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com