【題目】平行四邊形的對(duì)角線相交于點(diǎn)的外接圓交于點(diǎn)且圓心恰好落在邊上,連接,若.

1)求證:切線.

2)求的度數(shù).

3)若的半徑為1,求的長(zhǎng).

【答案】1)詳見解析;2;3

【解析】

1)連接OB,根據(jù)平行四邊形的性質(zhì)得到∠BAD=∠BCD45°,根據(jù)圓周角定理得到∠BOD2BAD90°,根據(jù)平行線的性質(zhì)得到OBBC,即可得到結(jié)論;

2)連接OM,根據(jù)平行四邊形的性質(zhì)得到BMDM,根據(jù)直角三角形的性質(zhì)得到OMBM,求得∠OBM60°,于是得到∠ADB30°;

3)連接EM,過MMFAEF,根據(jù)等腰三角形的性質(zhì)得到∠MOF=∠MDF30°,根據(jù)OMOE1,解直角三角形即可得到結(jié)論.

1)證明:連接OB,

∵四邊形ABCD是平行四邊形,

∴∠BAD=∠BCD45°,

∴∠BOD2BAD90°,

ADBC,

∴∠DOB+∠OBC180°,

∴∠OBC90°,

OBBC,

BC為⊙O切線;

2)解:連接OM,

∵四邊形ABCD是平行四邊形,

BMDM,

∵∠BOD90°,

OMBM

OBOM,

OBOMBM

∴∠OBM60°,

∴∠ADB30°;

3)解:連接EM,過MMFAEF

OMDM,

∴∠MOF=∠MDF30°,

的半徑為1

OMOE1,

FM,OF,

EF1

EM==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20195月,以“尋根國(guó)學(xué),傳承文明”為主題的蘭州市第三屆“國(guó)學(xué)少年強(qiáng)一國(guó)學(xué)知識(shí)挑戰(zhàn)賽”總決賽拉開帷幕,小明晉級(jí)了總決賽.比賽過程分兩個(gè)環(huán)節(jié),參賽選手須在每個(gè)環(huán)節(jié)中各選擇一道題目.

第一環(huán)節(jié):寫字注音、成語(yǔ)故事、國(guó)學(xué)常識(shí)、成語(yǔ)接龍(分別用表示);

第二環(huán)節(jié):成語(yǔ)聽寫、詩(shī)詞對(duì)句、經(jīng)典通讀(分別用表示)

1)請(qǐng)用樹狀圖或列表的方法表示小明參加總決賽抽取題目的所有可能結(jié)果

2)求小明參加總決賽抽取題目都是成語(yǔ)題目(成語(yǔ)故事、成語(yǔ)接龍、成語(yǔ)聽寫)的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=BCD=90°,∠B=45°DEACEABF,若BC=2CDAE=2,則線段BF=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y=(x0)圖象上一點(diǎn),直線y=kx+b過點(diǎn)A并且與兩坐標(biāo)軸分別交于點(diǎn)B,C,過點(diǎn)AADx軸,垂足為D,連接DC,若△BOC的面積是4,則△DOC的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊的邊長(zhǎng)為,頂點(diǎn)軸正半軸上,將折疊,使點(diǎn)落在軸上的點(diǎn)處,折痕為.當(dāng)是直角三角形時(shí),點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明代表學(xué)校參加我和我的祖國(guó)主題宣傳教育活動(dòng),該活動(dòng)分為兩個(gè)階段,第一階段有歌曲演唱書法展示、器樂獨(dú)奏”3個(gè)項(xiàng)目(依次用、表示),第二階段有故事演講、詩(shī)歌朗誦”2個(gè)項(xiàng)目(依次用、表示),參加人員在每個(gè)階段各隨機(jī)抽取一個(gè)項(xiàng)目完成.

1)用畫樹狀圖或列表的方法,列出小明參加項(xiàng)目的所有等可能的結(jié)果;

2)求小明恰好抽中、兩個(gè)項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)P,Q分別在邊AB,BC的延長(zhǎng)線上且BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當(dāng)正方形的邊長(zhǎng)為3,BP=1時(shí),cos∠DFO=其中正確結(jié)論的個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A1的坐標(biāo)為(10,A2y軸的正半軸上,且∠A1A2O=30°,過點(diǎn)A2A2A3A1A2,垂足為A2,x軸于點(diǎn)A3,過點(diǎn)A3A3A4A2A3,垂足為A3,y軸于點(diǎn)A4;過點(diǎn)A4A4A5A3A4,垂足為A4,x軸于點(diǎn)A5;過點(diǎn)A5A5A6A4A5,垂足為A5,y軸于點(diǎn)A6;按此規(guī)律進(jìn)行下去,則點(diǎn)A2017的橫坐標(biāo)為(

A.B.0C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yx2+bxt的對(duì)稱軸為x2.若關(guān)于x的一元二次方程x2+bxt0在﹣1x3的范圍內(nèi)有實(shí)數(shù)解,則t的取值范圍是(  )

A. 4t5B. 4t<﹣3C. t≥﹣4D. 3t5

查看答案和解析>>

同步練習(xí)冊(cè)答案