【題目】已知函數(shù)y=﹣x+4,回答下列問題:

(1)請在右圖的直角坐標(biāo)系中畫出函數(shù)y=﹣x+4圖象;

(2)y的值隨x值的增大而________;

(3)當(dāng)y=2時,x的值為_________;

(4)當(dāng)y0時,x的取值范圍是_______

【答案】 減小 x=2 x4

【解析】試題分析:(1)采用兩點法作圖即可;
(2)根據(jù)函數(shù)的圖象確定其增減性即可;
(3)代入y的值求得x底面值即可;
(4)根據(jù)函數(shù)值的取值范圍結(jié)合圖象確定x的取值范圍即可.

試題解析:(1)圖象如圖所示:

(2)觀察圖象知y隨著x的增大而減小;
(3)當(dāng)y=2時,-x+4=2,
解得:x=2;
(4)觀察圖象知:當(dāng)y<0時,x>4,
故答案為:減小;x=2;x>4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建立模型:

如圖1,已知ABC,AC=BC,C=90°,頂點C在直線l上.

操作:

過點A作ADl于點D,過點B作BEl于點E.求證:CAD≌△BCE

模型應(yīng)用:

(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.

(2)如圖3,在直角坐標(biāo)系中,點B(8,6),作BAy軸于點A,作BCx軸于點C,P是線段BC上的一個動點,點Q(a,2a﹣6)位于第一象限內(nèi).問點A、P、Q能否構(gòu)成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠B=90°,tanBAC=,半徑為2的⊙O從點A開始(圖1),沿AB向右滾動,滾動時始終與AB相切(切點為D);當(dāng)圓心O落在AC上時滾動停止,此時⊙OBC相切于點E(圖2).作OGAC于點G.

(1)利用圖2,求cosBAC的值;

(2)當(dāng)點D與點A重合時(如圖1),求OG;

(3)如圖3,在⊙O滾動過程中,設(shè)AD=x,請用含x的代數(shù)式表示OG,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長均為1個單位長度的方格紙中,有一個ABC和一點O,ABC的頂點和點O均與小正方形的頂點重合.

1)在方格紙中,將ABC向下平移5個單位長度得到A1B1C1,請畫出A1B1C1;

2)在方格紙中,將ABC繞點O旋轉(zhuǎn)180°得到A2B2C2,請畫出A2B2C2

3)求出四邊形BCOC1的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是菱形,AB=4,ABC=60°EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且EAF=60°

1如圖1,當(dāng)點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關(guān)系;

2如圖2,當(dāng)點E是線段CB上任意一點時點E不與B、C重合,求證:BE=CF;

3如圖3,當(dāng)點E在線段CB的延長線上,且EAB=15°時,求點F到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4BC=6,EBC邊的中點,點P在線段AD上,過PPFAEF,設(shè)PA=x

1)求證:PFA∽△ABE;

2)當(dāng)點P在線段AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當(dāng)以D為圓心,DP為半徑的⊙D線段AE只有一個公共點時,請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為矩形ABCD對角線的交點,DEAC,CEBD

(1)試判斷四邊形OCED的形狀,并說明理由;

(2)若AB=6,BC=8,求四邊形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,任意兩點A, ),B, ),規(guī)定運算:AB=, );AB=當(dāng)時,A=B,有下列四個命題:(1)若A1,2),B2﹣1),則AB=3,1),AB=0;

2)若A⊕B=B⊕C,則A=C;

3)若AB=BC,則A=C;

4)對任意點A、B、C,均有(A⊕B⊕C=A⊕B⊕C)成立,其中正確命題的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案