【題目】如圖,在中,,,DF是的中位線(xiàn),點(diǎn)C關(guān)于DF的對(duì)稱(chēng)點(diǎn)為E,以DE,EF為鄰邊構(gòu)造矩形DEFG,DG交BC于點(diǎn)H,連結(jié)CG.
求證:≌.
若.
求CG的長(zhǎng).
在的邊上取一點(diǎn)P,在矩形DEFG的邊上取一點(diǎn)Q,若以P,Q,C,G為頂點(diǎn)的四邊形是平行四邊形,求出所有滿(mǎn)足條件的平行四邊形的面積.
在內(nèi)取一點(diǎn)O,使四邊形AOHD是平行四邊形,連結(jié)OA,OB,OC,直接寫(xiě)出,,的面積之比.
【答案】(1)證明見(jiàn)解析;(2)①1;②或或.(3):3:1.
【解析】
根據(jù)矩形的性質(zhì)、翻折不變性利用HL即可證明;
想辦法證明即可解決問(wèn)題;
共三種情形畫(huà)出圖形,分別解決問(wèn)題即可;
如圖5中,連接OD、OE、OB、首先證明四邊形DOHC是矩形,求出OD、OH、OE即可解決問(wèn)題.
如圖1中,
四邊形DEFG是矩形,
,,
由翻折不變性可知:,,
,,
,
≌,
如圖1中,≌,
,,
,
,
,,
,
,
,
,,
,
,
,
.
如圖2中,當(dāng)點(diǎn)P與A重合,點(diǎn)Q與E重合時(shí),四邊形PQGC是平行四邊形,此時(shí)
如圖3中,當(dāng)四邊形QPGC是平行四邊形時(shí),.
如圖4中,當(dāng)四邊形PQCG是平行四邊形時(shí),作于M,CE交DF于N.
易知,,
如圖中,當(dāng)四邊形PQCG是平行四邊形時(shí),,
綜上所述,滿(mǎn)足條件的平行四邊形的面積為或或.
如圖5中,連接OD、OE、OB、OC.
四邊形AOHD是平行四邊形,
,,
四邊形CDOH是平行四邊形,
,
四邊形CDOH是矩形,
,
≌,
,
,,
,,,,
:::::3:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種子商店銷(xiāo)售“黃金一號(hào)”玉米種子,為惠民促銷(xiāo),推出兩種銷(xiāo)售方案供采購(gòu)者選擇.
方案一:每千克種子價(jià)格為4元,均不打折;
方案二:購(gòu)買(mǎi)3千克以?xún)?nèi)(含3千克)的價(jià)格為每千克5元,若一次購(gòu)買(mǎi)超過(guò)3千克,則超出部分的種子打七折.
(1)請(qǐng)分別求出方案一、方案二中購(gòu)買(mǎi)的種子數(shù)量x(千克)與付款金額y(元)之間的函數(shù)關(guān)系式;
(2)若你去購(gòu)買(mǎi)一定量的種子,你會(huì)怎樣選擇方案?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知∠DAB=∠DCB,AF平分∠DAB,CE平分∠DCB,∠FCE=∠CEB,試說(shuō)明:AF∥CE。
解:(1)因?yàn)?/span>∠DAB=∠DCB( ),
又AF平分∠DAB,
所以_____=∠DAB( ),
又因?yàn)?/span>CE平分∠DCB,
所以∠FCE=_____( ),
所以∠FAE=∠FCE。
因?yàn)?/span>∠FCE=∠CEB,
所以______=________
所以AF∥CE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與反比例函數(shù)的圖象分別交于A、C兩點(diǎn),已知點(diǎn)B與點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱(chēng),且點(diǎn)B的坐標(biāo)為其中.
四邊形ABCD的是______填寫(xiě)四邊形ABCD的形狀
當(dāng)點(diǎn)A的坐標(biāo)為時(shí),四邊形ABCD是矩形,求m,n的值.
試探究:隨著k與m的變化,四邊形ABCD能不能成為菱形?若能,請(qǐng)直接寫(xiě)出k的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解2016年初中畢業(yè)生畢業(yè)后的去向,某縣教育局對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向(A,讀普通高中;B,讀職業(yè)高中; C,直接進(jìn)入社會(huì)就業(yè); D,其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)該縣共調(diào)查了多少名初中畢業(yè)生?
(2)通過(guò)計(jì)算,將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;
(3)若該縣2016年初三畢業(yè)生共有4500人,請(qǐng)估計(jì)該縣今年的初三畢業(yè)生中準(zhǔn)備讀普通高中的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一個(gè)三角點(diǎn)陣,從上向下數(shù)有無(wú)數(shù)多行,其中第一行有1個(gè)點(diǎn),第二行有2個(gè)點(diǎn),第三行有4個(gè)點(diǎn),第四行有8個(gè)點(diǎn),….那么這個(gè)三角點(diǎn)陣中前n行的點(diǎn)數(shù)之和可能是( 。
A. 510 B. 511 C. 512 D. 513
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會(huì)平行嗎?說(shuō)明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折線(xiàn)ABCDE描述了一輛汽車(chē)在某一直線(xiàn)上行駛過(guò)程中,汽車(chē)離出發(fā)地的距離y(km)和行駛時(shí)間x(h)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說(shuō)法:①汽車(chē)共行駛了120km;②汽車(chē)在行駛途中停留了0.5h;③汽車(chē)在整個(gè)行駛過(guò)程中的平均速度為km/h;④汽車(chē)自出發(fā)后3h~4.5h之間行駛的速度在逐漸減。渲姓_的說(shuō)法是 .(填上所有正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板放在同一平面內(nèi),使直角頂點(diǎn)重合于點(diǎn)O
(1)如圖①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度數(shù).
(2)如圖①,你發(fā)現(xiàn)∠AOD與∠BOC的大小有何關(guān)系?∠AOB與∠DOC有何關(guān)系?直接寫(xiě)出你發(fā)現(xiàn)的結(jié)論.
(3)如圖②,當(dāng)△AOC與△BOD沒(méi)有重合部分時(shí),(2)中你發(fā)現(xiàn)的結(jié)論是否還仍然成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com