【題目】 如圖所示,在平面直角坐標系xOy中,拋物線y=ax2-2ax-3a(a<0)與x軸交于A,B兩點(點A在點B的左側(cè)),經(jīng)過點A的直線l:y=kx+b與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.
(1)求A,B兩點的坐標及拋物線的對稱軸;
(2)求直線l的函數(shù)解析式(其中k,b用含a的式子表示);
(3)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;
(4)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,直接寫出點P的坐標;若不能,請說明理由.
【答案】(1)A(﹣1,0),B(3,0),x=1;(2)y=ax+a;(3);(4)以點A、D、P、Q為頂點的四邊形能成為矩形,(1,﹣)或(1,﹣4).
【解析】
(1)解方程即可得到結(jié)論;(2)根據(jù)直線l:y=kx+b過A(﹣1,0),得到直線l:y=kx+k,解方程得到點D的橫坐標為4,求得k=a,得到直線l的函數(shù)表達式為y=ax+a;(3)過E作EF∥y軸交直線l于F,設E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根據(jù)三角形的面積公式列方程即可得到結(jié)論;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),設P(1,m),①若AD是矩形ADPQ的一條邊,②若AD是矩形APDQ的對角線,列方程即可得到結(jié)論.
(1)當y=0時,ax2﹣2ax﹣3a=0,
解得:x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
對稱軸為直線x==1;
(2)∵直線l:y=kx+b過A(﹣1,0),
∴0=﹣k+b,
即k=b,
∴直線l:y=kx+k,
∵拋物線與直線l交于點A,D,
∴ax2﹣2ax﹣3a=kx+k,
即ax2﹣(2a+k)x﹣3a﹣k=0,
∵CD=4AC,
∴點D的橫坐標為4,
∴﹣3﹣=﹣1×4,
∴k=a,
∴直線l的函數(shù)表達式為y=ax+a;
(3)過E作EF∥y軸交直線l于F,設E(x,ax2﹣2ax﹣3a),則F(x,ax+a),
∴EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,
∴S△ACE=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣3ax﹣4a)=a(x﹣)2﹣a,
∴△ACE的面積的最大值=﹣a,
∵△ACE的面積的最大值為,
∴﹣a=,
解得;
(4)以點A、D、P、Q為頂點的四邊形能成為矩形,
令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,
解得:x1=﹣1,x2=4,
∴D(4,5a),
∵拋物線的對稱軸為直線x=1,
設P(1,m),
①若AD是矩形ADPQ的一條邊,則易得Q(﹣4,21a),
∴m=21a+5a=26a,則P(1,26a),
∵四邊形ADPQ是矩形,
∴∠ADP=90°,
∴AD2+PD2=AP2,
∴52+(5a)2+32+(26a﹣5a)2=22+(26a)2,
即a2=,
∵a<0,
∴a=﹣,
∴P(1,﹣);
②若AD是矩形APDQ的對角線,則易得Q(2,﹣3a),
∴m=5a﹣(﹣3a)=8a,則P(1,8a),
∵四邊形APDQ是矩形,
∴∠APD=90°,
∴AP2+PD2=AD2,
∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2,
即a2=,
∵a<0,
∴a=﹣ ,
∴P(1,﹣4),
綜上所述,點A、D、P、Q為頂點的四邊形能成為矩形,點P(1,﹣)或(1,﹣4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y=x+1與y軸交于點A,與雙曲線(x>0)交于點B(2,a).
(1)求a,k的值.
(2)點P是直線l上方的雙曲線上一點,過點P作平行于y軸的直線,交直線l于點C,過點A作平行于x軸的直線,交直線PC于點D,設點P的橫坐標為m.
①若m=,試判斷線段CP與CD的數(shù)量關系,并說明理由;②若CP>CD,請結(jié)合函數(shù)圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解全校學生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,解答下列問題:
(1)這次被調(diào)查的學生共有多少人?
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校約有1500名學生,估計全校學生中喜歡娛樂節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學中選取2名,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交 AB于點F.
(1)求證:AE為⊙O的切線;
(2)當BC=8,AC=12時,求EM的長;
(3)在(2)的條件下,可求出⊙O的半徑為 ,線段BG的長 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生環(huán)保意識,某中學舉辦了環(huán)保知識競賽,某班共有5名學生(3名男生,2名女生)獲獎.
(1)老師若從獲獎的5名學生中選取一名作為班級的“環(huán)保小衛(wèi)士”,則恰好是男生的概率為 .
(2)老師若從獲獎的5名學生中任選兩名作為班級的“環(huán)保小衛(wèi)士”,請用畫樹狀圖法或列表法,求出恰好是一名男生、一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級組織有獎知識競賽,派小明去購買A、B兩種品牌的鋼筆作為獎品.已知一支A品牌鋼筆的價格比一支B品牌鋼筆的價格多5元,且買100元A品牌鋼筆與買50元B品牌鋼筆數(shù)目相同.
(1)求A、B兩種品牌鋼筆的單價分別為多少元?
(2)根據(jù)活動的設獎情況,決定購買A、B兩種品牌的鋼筆共100支,如果設購買A品牌鋼筆的數(shù)量為n支,購買這兩種品牌的鋼筆共花費y元.
①直接寫出y(元)關于n(支)的函數(shù)關系式;
②如果所購買A品牌鋼筆的數(shù)量不少于B品牌鋼筆數(shù)量的,請你幫助小明計算如何購買,才能使所花費的錢最少?此時花費是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當y>0時,﹣1<x<3,其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平面直角坐標系xOy中,一次函數(shù)y=2x﹣2的圖象與函數(shù)y=(k≠0)的圖象有交點為A(m,2),與y軸交于點B
(1)求反比例函數(shù)的解析式;
(2)若函數(shù)y=在第一象限的圖象上有一點P,且△POB的面積為6,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解
如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點.點,,的橫坐標分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個關于,,之間數(shù)量關系的命題:若,則______.
(2)證明命題
小東認為:可以通過“若,則”的思路證明上述命題.
小晴認為:可以通過“若,,且,則”的思路證明上述命題.
請你選擇一種方法證明(1)中的命題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com