【題目】如圖,正方形ABCD中,點(diǎn)EF分別在邊,AD,CD上,且,BDEF交于點(diǎn)O,延長(zhǎng)BD至點(diǎn)H,使得,并連接HEHF

求證:;

試判斷四邊形BEHF是什么特殊的四邊形,并說明理由.

【答案】(1)見解析;(2)四邊形BEHF是菱形.理由見解析.

【解析】

(1)根據(jù)題意可得AB=CB,BE=BF,即可證,所以;

(2)由(1)可得DE=DF,即為等腰直角三角形,可得EF垂直BH,然后可證得OE=OF,即EFBH互相垂直平分,所以四邊形BEHF是菱形.

四邊形ABCD是正方形,

,

中,

,,

四邊形BEHF是菱形;

理由:四邊形ABCD是正方形,

,,

,

為等腰直角三角形,

,

,即

,

,

,

四邊形BEHF是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,平分.

1)若為線段上的一個(gè)點(diǎn),過點(diǎn)交線段的延長(zhǎng)線于點(diǎn)

①若,則  ;

②猜想之間的數(shù)量關(guān)系,并給出證明.

2)若在線段的延長(zhǎng)線上,過點(diǎn)交直線于點(diǎn).請(qǐng)你做出示意圖,直接寫出、的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),平面直角坐標(biāo)系中,點(diǎn)AB分別在x、y軸上,點(diǎn)B的坐標(biāo)為(01),∠BAO=30°.

1)求AB的長(zhǎng)度;

2)以AB為一邊作等邊△ABE,作OA的垂直平分線MNAB的垂線AD于點(diǎn),求證:BD=OE

3)在(2)的條件下,連接DEABF,求證:FDE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線,其頂點(diǎn)坐標(biāo)為,拋物線與x軸的一個(gè)交點(diǎn)為,直線與拋物線交于A,B兩點(diǎn),下列結(jié)論:,,方程有兩個(gè)相等的實(shí)數(shù)根,拋物線與x軸的另一個(gè)交點(diǎn)是,當(dāng)時(shí),有其中正確結(jié)論的個(gè)數(shù)是  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADEC

1)若∠C40°,AB平分∠DAC,求∠DAB的度數(shù).

2)若AE平分∠DAB,BF平分∠ABC,試說明AEBF的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校要對(duì)如圖所示的一塊地進(jìn)行綠化,已知AD8米,CD6米,ADCDAB26米,BC24米,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,,,,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BC以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)N同時(shí)從點(diǎn)C出發(fā)沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng).

設(shè)運(yùn)動(dòng)的時(shí)間為t

BC的長(zhǎng).

當(dāng)時(shí),求t的值.

設(shè)的面積為,試確定t的函數(shù)關(guān)系式.

在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使65?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC的面積為4cm2AP垂直∠B的平分線BP于點(diǎn)P.則三角形PBC的面積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊ABCABBC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,

1)求證:ABQ CAP;

2)∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

3)連接PQ,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)多少秒時(shí),PBQ是直角三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案