【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F(xiàn),DF與AC交于點M,DE與BC交于點N.
(1)如圖1,若CE=CF,求證:DE=DF;
(2)如圖2,在∠EDF繞點D旋轉(zhuǎn)的過程中:
①探究三條線段AB,CE,CF之間的數(shù)量關(guān)系,并說明理由;
②若CE=4,CF=2,求DN的長.
【答案】
(1)
證明:∵∠ACB=90°,AC=BC,AD=BD,
∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,
∴∠DCE=∠DCF=135°,
在△DCE與△DCF中, ,
∴△DCE≌△DCF,
∴DE=DF;
(2)
解:①∵∠DCF=∠DCE=135°,
∴∠CDF+∠F=180°﹣135°=45°,
∵∠CDF+∠CDE=45°,
∴∠F=∠CDE,
∴△CDF∽△CED,
∴ ,
即CD2=CECF,
∵∠ACB=90°,AC=BC,AD=BD,
∴CD= AB,
∴AB2=4CECF;
②如圖,過D作DG⊥BC于G,
則∠DGN=∠ECN=90°,CG=DG,
當(dāng)CE=4,CF=2時,
由CD2=CECF得CD=2 ,
∴在Rt△DCG中,CG=DG=CDsin∠DCG=2 ×sin45°=2,
∵∠ECN=∠DGN,∠ENC=∠DNG,
∴△CEN∽△GDN,
∴ =2,
∴GN= CG= ,
∴DN= = = .
【解析】(1)根據(jù)等腰直角三角形的性質(zhì)得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根據(jù)全等三角形的性質(zhì)即可的結(jié)論;(2)①證得△CDF∽△CED,根據(jù)相似三角形的性質(zhì)得到 ,即CD2=CECF,根據(jù)等腰直角三角形的性質(zhì)得到CD= AB,于是得到AB2=4CECF;②如圖,過D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,當(dāng)CE=4,CF=2時,求得CD=2 ,推出△CEN∽△GDN,根據(jù)相似三角形的性質(zhì)得到 =2,根據(jù)勾股定理即可得到結(jié)論.
【考點精析】掌握等腰直角三角形和勾股定理的概念是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應(yīng),那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當(dāng)自變量x=a時,相應(yīng)的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當(dāng)x=4時,f(4)=42﹣2×4﹣3=5在平面直角坐標(biāo)系xOy中,對于函數(shù)的零點給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對應(yīng)的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點,即存在c(a≤c≤b),使f(c)=0,則c叫做這個函數(shù)的零點,c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.
觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點,﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點的個數(shù)是 .
(2)已知函數(shù)y2=f(x)=﹣ 的零點為x1 , x2 , 且x1<1<x2 .
①求零點為x1 , x2(用a表示);
②在平面直角坐標(biāo)xOy中,在x軸上A,B兩點表示的數(shù)是零點x1 , x2 , 點 P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,若a是整數(shù),求拋物線y2的表達(dá)式并直接寫出線段PQ長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中AB=12cm,BC=6cm,點P沿AB邊從點A開始以2cm/秒的速度移動,點Q沿DA邊從D以1cm/秒的速度移動,若P、Q同時出發(fā),用t表示移動時間(0≤t≤6),求當(dāng)t何值時,△APQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象經(jīng)過點A(3,0),B(4,1),且與y軸交于點C,連接AB、AC、BC.
(1)求此二次函數(shù)的關(guān)系式;
(2)判斷△ABC的形狀;若△ABC的外接圓記為⊙M,請直接寫出圓心M的坐標(biāo);
(3)若將拋物線沿射線BA方向平移,平移后點A、B、C的對應(yīng)點分別記為點A1、B1、C1 , △A1B1C1的外接圓記為⊙M1 , 是否存在某個位置,使⊙M1經(jīng)過原點?若存在,求出此時拋物線的關(guān)系式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠(yuǎn)流長,在文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”,某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個不完整的統(tǒng)計圖,請結(jié)合圖中信息解決下列問題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是部,中位數(shù)是部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為度.
(2)請將條形統(tǒng)計圖補充完整;
(3)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來閱讀,則他們選中同一名著的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=6.
(1)求拋物線的解析式及點D的坐標(biāo);
(2)連接BD,F(xiàn)為拋物線上一動點,當(dāng)∠FAB=∠EDB時,求點F的坐標(biāo);
(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當(dāng)點P在x軸上,且PQ= MN時,求菱形對角線MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+x的圖象,如圖所示
(1)根據(jù)方程的根與函數(shù)圖象之間的關(guān)系,將方程x2+x=1的根在圖上近似地表示出來(描點),并觀察圖象,寫出方程x2+x=1的根(精確到0.1).
(2)在同一直角坐標(biāo)系中畫出一次函數(shù)y= x+ 的圖象,觀察圖象寫出自變量x取值在什么范圍時,一次函數(shù)的值小于二次函數(shù)的值.
(3)如圖,點P是坐標(biāo)平面上的一點,并在網(wǎng)格的格點上,請選擇一種適當(dāng)?shù)钠揭品椒,使平移后二次函?shù)圖象的頂點落在P點上,寫出平移后二次函數(shù)圖象的函數(shù)表達(dá)式,并判斷點P是否在函數(shù)y= x+ 的圖象上,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com