【題目】山西是我國釀酒最早的地區(qū)之一,山西釀酒業(yè)迄今為止已有余年的歷史.在漫長的歷史進程中,山西人民釀造出品種繁多、馳名中外的美酒佳釀,其中以汾酒、竹葉青酒最為有名.某煙酒超市賣有竹葉青酒,每瓶成本價是元,經調查發(fā)現,當售價為元時,每天可以售出瓶,售價每降低元,可多售出瓶(售價不高于元)
(1)售價為多少時可以使每天的利潤最大?最大利潤是多少?
(2)要使每天的利潤不低于元,每瓶竹葉青酒的售價應該控制在什么范圍內?
【答案】(1)每瓶竹葉青酒售價為元時,利潤最大,最大利潤為元;(2)要使每天利潤不低于元,每瓶竹葉青酒售價應控制在元到元之間.
【解析】
(1)設每瓶竹葉青酒售價為元,每天的銷售利潤為元,根據“當售價為元時,每天可以售出瓶,售價每降低元,可多售出瓶”即可列出二次函數,再整理成頂點式即可得出;
(2)由題意得,再根據二次函數的性質即可得出.
解:(1)設每瓶竹葉青酒售價為元,每天的銷售利潤為元.則:
,
整理得:.
,
當時,取得最大值.
每瓶竹葉青酒售價為元時,利潤最大,最大利潤為元.
(2)每天的利潤為元時,
.
解得:,.
,由二次函數圖象的性質可知,
時,.
要使每天利潤不低于元,每瓶竹葉青酒售價應控制在元到元之間.
科目:初中數學 來源: 題型:
【題目】我們知道,如圖1,AB是⊙O的弦,點F是的中點,過點F作EF⊥AB于點E,易得點E是AB的中點,即AE=EB.⊙O上一點C(AC>BC),則折線ACB稱為⊙O的一條“折弦”.
(1)當點C在弦AB的上方時(如圖2),過點F作EF⊥AC于點E,求證:點E是“折弦ACB”的中點,即AE=EC+CB.
(2)當點C在弦AB的下方時(如圖3),其他條件不變,則上述結論是否仍然成立?若成立說明理由;若不成立,那么AE、EC、CB滿足怎樣的數量關系?直接寫出,不必證明.
(3)如圖4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圓⊙O的半徑為2,過⊙O上一點P作PH⊥AC于點H,交AB于點M,當∠PAB=45°時,求AH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點P從點B出發(fā),以cm/s的速度沿BC方向運動到點C停止,同時點Q從點B出發(fā)以2cm/s的速度沿B→A→C運動到點C停止.若△BPQ的面積為y運動時間為x(s),則下列圖象中能大致反映y與x之間關系的是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C(0,3),且OB=OC=3AO.直線y=x+1與拋物線交于A、D兩點,與y軸交于點E,點Q是拋物線的頂點,設直線AD上方的拋物線上的動點P的橫坐標為m.
(1)求該拋物線的解析式及頂點Q的坐標;
(2)連結CQ,判斷線段CQ與線段AE的數量關系和位置關系,并說明理由.
(3)連結PA、PD,當m為何值時,S△PAD=S△DAB;
(4)在直線AD上是否存在一點H使△PQH為等腰直角三角形,若存在請求出m的值,不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】非洲豬瘟疫情發(fā)生以來,豬肉市場供應階段性偏緊和豬價大幅波動時有發(fā)生,為穩(wěn)定生豬生產,促進轉型升級,增強豬肉供應保障能力,國務院辦公廳于2019年9月印發(fā)了《關于穩(wěn)定生豬生產促進轉型升級的意見》,某生豬飼養(yǎng)場積極響應國家號召,努力提高生產經營管理水平,穩(wěn)步擴大養(yǎng)殖規(guī)模,增加豬肉供應量。該飼養(yǎng)場2019年每月生豬產量y(噸)與月份x(,且x為整數)之間的函數關系如圖所示.
(1)請直接寫出當(x為整數)和(x為整數)時,y與x的函數關系式;
(2)若該飼養(yǎng)場生豬利潤P(萬元/噸)與月份x(,且x為整數)滿足關系式:,請問:該飼養(yǎng)場哪個月的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“食品安全”受到全社會的廣泛關注,武漢市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有 人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為 ;
(2)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,恰好抽到1個男生和1個女生的概率為 ;
(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若關于x的一元二次方程(m+1)x2﹣2x﹣1=0有兩個不相等的實數根,
(1)求m的取值范圍;
(2)若x=1是方程的一個根,求m的值和另一個根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某農場要建一個飼養(yǎng)場(長方形ABCD),飼養(yǎng)場的一面靠墻(墻最大可用長度為27米),另三邊用木欄圍成,中間也用木欄隔開,分成兩個場地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長57米,設飼養(yǎng)場(長方形ABCD)的寬為a米.
(1)飼養(yǎng)場的長為多少米(用含a的代數式表示).
(2)若飼養(yǎng)場的面積為288m2,求a的值.
(3)當a為何值時,飼養(yǎng)場的面積最大,此時飼養(yǎng)場達到的最大面積為多少平方米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:點D是△ABC中AC的中點,AE∥BC,ED交AB于點G,交BC的延長線于點F.
(1)求證:△GAE∽△GBF;
(2)求證:AE=CF;
(3)若BG:GA=3:1,BC=8,求AE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com