【題目】如圖,△ABC和△ADE是兩個不全等的等腰直角三角形,其中點B與點D是直角頂點,現(xiàn)固定△ABC,而將△ADE繞點A在平面內(nèi)旋轉(zhuǎn).

1)如圖1,當點DCA延長線上時,點MEC的中點,求證:△DMB是等腰三角形.

2)如圖2,當點ECA延長線上時,MEC上一點,若△DMB是等腰直角三角形,∠DMB為直角,求證:點MEC的中點.

3)如圖3,當△ADE繞點A旋轉(zhuǎn)任意角度時,線段EC上是否都存在點M,使△BMD為等腰直角三角形,若不存在,請舉出反例;若存在,請予以證明.

【答案】1)見解析;(2)見解析;(3)線段EC上都存在中點M,使△BMD為等腰直角三角形,理由見解析

【解析】

1)利用直角三角形斜邊上的中線等于斜邊的一半得出BMDMEC,即可得出答案;

2)根據(jù)AAS證明△DFM≌∠MGB,得FMBG,DFMG,根據(jù)線段的和表示EMMC,可得結(jié)論;

3)線段EC上都存在中點M,使△BMD為等腰直角三角形,作輔助線,構(gòu)建全等三角形,證明△DFM≌∠MGBSAS),得BMDM,∠FMD=∠GBM,再證明∠DMB90°,可得結(jié)論.

(1)如圖1,∵∠EDC=90°,點MEC的中點,

DM=EC

同理可得:BM=EC

DM=BM

∴△DMB是等腰三角形;

(2)過點DDFEA,過點BBGAC

∵△ABC和△ADE是兩個等腰直角三角形,

BG=GC=AG,DF=EF=FA,

∴∠DFM=∠BGM=90°,

∴∠FDM+DMF=90°

∵△DMB是等腰直角三角形,

DM=BM,∠DMB=90°,

∴∠BMG+DMF=90°,

∴∠FDM=∠BMG,

∴△DFM≌∠MGB(AAS),

FM=BG,DF=MG,

BG=GC,DF=EF,

FM=GC,MG=EF,

EM=EF+FM,MC=MG+GC,

EM=MC

∴點MEC的中點;

(3)線段EC上都存在中點M,使△BMD為等腰直角三角形,

理由是:取AE中點F,AC中點G,連接FD,FM,BG,GM,

∵點MEC的中點,點GAC的中點,

GM=AE,GMAEBGAC,∠BGC=90,

FAE中點,

AF=AE,DFAE,∠DFE=90,

AFGM,AF=GM,

∴四邊形AFMG是平行四邊形,

∴∠AFM=∠AGM,

∴∠EFM=∠MGC

∵∠DFM=∠EFM+∠DFE=∠EFM+90,

BGM=MGC+BGC=MGC+90,

∴∠DFM=∠BGM,

GM=AF=DF,

DF=GM

同理可得 BG=FM,

∴△DFM≌∠MGB(SAS),

BM=DM,∠FMD=∠GBM,

FMAC

∴∠FMG=∠CGM,

∴∠DMB=∠FMD+FMG+GMB,

=∠GBM+CGM+GMB

=180°﹣∠BGC,

=90°

∴△BMD是等腰直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1x+4的圖象與反比例函數(shù)y2的圖象交于A(﹣1,a),B兩點,與x軸交于點C

1)求k

2)根據(jù)圖象直接寫出y1y2時,x的取值范圍.

3)若反比例函數(shù)y2與一次函數(shù)y1x+4的圖象總有交點,求k的取值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】上周六上午點,小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們在一個服務區(qū)休息了半小時,然后直達姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時間(時)之間的函數(shù)圖象,請根據(jù)以上信息,解答下列問題:

(1)求直線所對應的函數(shù)關(guān)系式;

(2)已知小穎一家出服務區(qū)后,行駛分鐘時,距姥姥家還有千米,問小穎一家當天幾點到達姥姥家?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在矩形ABCD中,AB<AD,對角線ACBD相交于點O,動點P由點A出發(fā),沿AB-BC→CD向點D運動設點P的運動路程為x,AOP的面積為y,yx的函數(shù)關(guān)系圖象如圖②所小示,則AD的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校準備組織一次“研學之旅”活動,現(xiàn)用抽簽的方式從以下四個地方:九峰公園、柑橘博覽園、平田桐樹坑、長潭水庫(其中九峰公園、平田桐樹坑是愛國主義教育基地)中確定兩個作為活動地點.將四個地點分別寫在4張完全相同的卡片上,背面朝上并洗勻,先從中隨機抽取一張卡片,再從剩下的卡片中隨機抽取一張.則“抽中的兩個地方都是愛國主義教育基地”的概率為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設置了監(jiān)測區(qū),其中點CD為監(jiān)測點,已知點C、D、B在同一直線上,且ACBC,CD400米,tanADC2,∠ABC35°

1)求道路AB段的長(結(jié)果精確到1米)

2)如果道路AB的限速為60千米/時,一輛汽車通過AB段的時間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201855日,中國郵政發(fā)行《馬克思誕辰200周年》紀念郵票12枚(如圖),這套郵票正面圖案為:馬克思像、馬克思與恩格斯像,背面完全相同.發(fā)行當日,小宇購買了此款紀念郵票2套,他將2套郵票沿中間虛線撕開(使4枚形狀、大小完全相同)后將4枚紀念郵票背面朝上放在桌面上,并隨機從中抽出2張,則抽出的2張郵票恰好都是“馬克思像”的概率為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場用兩個月時間試銷某種新型商品,經(jīng)市場調(diào)查,該商品的第天的進價(元/件)()之間的相關(guān)信息如下表:

時間()

進價(元/件)

40

該商品在銷售過程中,銷售量()()之間的函數(shù)關(guān)系如圖所示:

在銷售過程中,商場每天銷售的該產(chǎn)品以每件80元的價格全部售出.

1)求該商品的銷售量()()之間的函數(shù)關(guān)系;

2)設第天該商場銷售該商品獲得的利潤為元,求出之間的函數(shù)關(guān)系式,并求出第幾天銷售利潤最大,最大利潤是多少元?

3)在銷售過程中,當天的銷售利潤不低于2400元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點,過點Py軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;

(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

同步練習冊答案