【題目】張老師計(jì)劃到超市購買甲種文具100個(gè),他到超市后發(fā)現(xiàn)還有乙種文具可供選擇,如果調(diào)整文具的購買品種,每減少購買1個(gè)甲種文具,需增加購買2個(gè)乙種文具.設(shè)購買x個(gè)甲種文具時(shí),需購買y個(gè)乙種文具.
(1)當(dāng)減少購買1個(gè)甲種文具時(shí),x= , y=;
(2)求y與x之間的函數(shù)表達(dá)式.
(3)已知甲種文具每個(gè)5元,乙種文具每個(gè)3元,張老師購買這兩種文具共用去540元,甲、乙兩種文具各購買了多少個(gè)?

【答案】
(1)99;2
(2)解:由題意y=2(100﹣x)=﹣2x+100,

∴y與x之間的函數(shù)表達(dá)式為y=﹣2x+100


(3)解:由題意 ,

解得 ,

答:甲、乙兩種文具各購買了60個(gè)和80個(gè)


【解析】解:(1)∵100﹣1=99, ∴x=99,y=2,
故答案為99;2.
(1)由題意可知x=99,y=2.(2)由題意y=2(100﹣x)=﹣2x+100.(3)列出方程組,解方程組即可解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小紅到美麗的世界地質(zhì)公園湖光巖參加社會(huì)實(shí)踐活動(dòng),在景點(diǎn)P處測(cè)得景點(diǎn)B位于南偏東45°方向;然后沿北偏東60°方向走100米到達(dá)景點(diǎn)A,此時(shí)測(cè)得景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)A與B之間的距離.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對(duì)學(xué)生的成長有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表.

組別

時(shí)間(小時(shí))

頻數(shù)(人數(shù))

頻率

A

0≤t≤0.5

6

0.15

B

0.5≤t≤1

a

0.3

C

1≤t≤1.5

10

0.25

D

1.5≤t≤2

8

b

E

2≤t≤2.5

4

0.1

合計(jì)

1

請(qǐng)根據(jù)圖表中的信息,解答下列問題:

(1)表中的a= , b= , 中位數(shù)落在組,將頻數(shù)分布直方圖補(bǔ)全
(2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書心得報(bào)告,請(qǐng)用畫樹狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,飛機(jī)在一定高度上沿水平直線飛行,先在點(diǎn)A處測(cè)得正前方小島C的俯角為30°,面向小島方向繼續(xù)飛行10km到達(dá)B處,發(fā)現(xiàn)小島在其正后方,此時(shí)測(cè)得小島的俯角為45°,如果小島高度忽略不計(jì),求飛機(jī)飛行的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,⊙O經(jīng)過點(diǎn)A、C、D,與BC相交于點(diǎn)E,連接AC、AE.若∠D=78°,則∠EAC=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=﹣2x+m的圖象經(jīng)過點(diǎn)P(﹣2,3),且與x軸、y軸分別交于點(diǎn)A、B,則△AOB的面積是( )
A.
B.
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BC是⊙O的直徑,點(diǎn)D為BC延長線上的一點(diǎn),點(diǎn)A為圓上一點(diǎn),且AB=AD,AC=CD.
(1)求證:△ACD∽△BAD;
(2)求證:AD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案