【題目】如圖,P為∠AOB內(nèi)一定點(diǎn),M,N分別是射線OA,OB上一點(diǎn),當(dāng)PMN周長(zhǎng)最小時(shí),∠OPM=50°,則∠AOB=___________

【答案】40°

【解析】

P關(guān)于OA,OB的對(duì)稱(chēng)點(diǎn)P1,P2.連接OP1,OP2.則當(dāng)M,NP1P2OA,OB的交點(diǎn)時(shí),△PMN的周長(zhǎng)最短,根據(jù)對(duì)稱(chēng)的性質(zhì)可以證得:∠OP1M=OPM=50°,OP1=OP2=OP,根據(jù)等腰三角形的性質(zhì)即可求解.

如圖:作P關(guān)于OA,OB的對(duì)稱(chēng)點(diǎn)P1,P2.連接OP1,OP2.則當(dāng)M,NP1P2OA、OB的交點(diǎn)時(shí),△PMN的周長(zhǎng)最短,連接P1O、P2O,

PP1關(guān)于OA對(duì)稱(chēng),

∴∠P1OP=2MOP,OP1=OP,P1M=PM,OP1M=OPM=50°

同理,∠P2OP=2NOP,OP=OP2,

∴∠P1OP2=P1OP+P2OP=2(MOP+NOP)=2AOB,OP1=OP2=OP,

∴△P1OP2是等腰三角形.

∴∠OP2N=OP1M=50°,

∴∠P1OP2=180°-2×50°=80°,

∴∠AOB=40°,

故答案為:40°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:
(1)已知:如圖1,在正方形ABCD中,點(diǎn)E、H分別在BC、AB上,若AE⊥DH于點(diǎn)O,求證AE=DH;

類(lèi)比探究:
(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說(shuō)明理由;
拓展應(yīng)用:
(3)已知,如圖3,在(2)問(wèn)條件下,若BC=4,E為BC的中點(diǎn),AF= AD,求HG的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你認(rèn)為月球上有水嗎?如圖是對(duì)某中學(xué)八年級(jí)的140名男生的調(diào)查結(jié)果.

(1)認(rèn)為“有水”的頻數(shù)為________,認(rèn)為“沒(méi)有水”的頻數(shù)是_______,認(rèn)為“不知道”的頻數(shù)是_______;

(2)認(rèn)為“有水”的頻率為_______,認(rèn)為“沒(méi)有水”的頻率是______,認(rèn)為“不知道”的頻率是_______,頻率之和為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程
(1)
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=14,BC=8,點(diǎn)E為邊BC上一點(diǎn),且BE=5,將紙片沿過(guò)點(diǎn)E的一條直線l翻折,使點(diǎn)B落在直線CD上,若l與矩形的邊的另一個(gè)交點(diǎn)為F,則EF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,0.5),B(﹣1,2)是一次函數(shù)y=ax+b與反比例函數(shù) (m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.

(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5x軸交于點(diǎn)D,直線y=-xx軸及直線x=-5分別交于點(diǎn)CE.點(diǎn)B,E關(guān)于x軸對(duì)稱(chēng),連接AB.

(1)求點(diǎn)CE的坐標(biāo)及直線AB的解析式;

(2)SSCDES四邊形ABDO,求S的值;

(3)在求(2)S時(shí),嘉琪有個(gè)想法:CDE沿x軸翻折到CDB的位置,而CDB與四邊形ABDO拼接后可看成AOC,這樣求S便轉(zhuǎn)化為直接求AOC的面積,如此不更快捷嗎?但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn)SAOCS,請(qǐng)通過(guò)計(jì)算解釋他的想法錯(cuò)在哪里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某同學(xué)在課下設(shè)計(jì)的一款軟件,藍(lán)精靈從點(diǎn)O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到達(dá)A2n后,要向________方向跳________個(gè)單位長(zhǎng)度落到A2n1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,A=40°,B=70°,CE平分ACB,CDAB于D,DFCE,則CDF= 度.

查看答案和解析>>

同步練習(xí)冊(cè)答案