【題目】如圖是某同學(xué)在課下設(shè)計的一款軟件,藍精靈從點O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到達A2n后,要向________方向跳________個單位長度落到A2n1.

【答案】(9,6)正東(2n+1)

【解析】

根據(jù)題意可知,藍精靈從點O第一跳落到A1走了一步,從A1A2走了兩步,從A2A3走了三步,以此類推,且A2n增加的為縱坐標(biāo),A2n+1增加的為橫坐標(biāo),由此規(guī)律可推算A5.

根據(jù)題意可知,藍精靈從點O第一跳落到A1走了一步,從A1A2走了兩步,從A2A3走了三步,以此類推,且A2n增加的為縱坐標(biāo),A2n+1增加的為橫坐標(biāo),故A4A5走了5步,4+5=9,故A59,6),到達A2n后,要向正東跳2n+1個單位長度到A2n+1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個如圖所示的長方體的透明魚缸,假設(shè)其長AD=80 cm,高AB=60 cm,水深A(yù)E=40 cm,在水面上緊貼內(nèi)壁G處有一魚餌,G在水面線EF上,且EG=60 cm.一小蟲想從魚缸外的點A處沿缸壁爬到魚缸內(nèi)G處吃魚餌.

(1)小蟲應(yīng)該走怎樣的路線才可使爬行的路程最短?請畫出它的爬行路線,并用箭頭標(biāo)注;

(2)試求小蟲爬行的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為∠AOB內(nèi)一定點,M,N分別是射線OA,OB上一點,當(dāng)PMN周長最小時,∠OPM=50°,則∠AOB=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人從A城出發(fā),前往距離A30千米的B城.現(xiàn)在有三種方案供他選擇:

①騎自行車,其速度為15千米/時;

②蹬三輪車,其速度為10千米/時;

③騎摩托車,其速度為40千米/時.

(1)選擇哪種方式能使他從A城到達B城的時間不超過2小時?請說明理由;

(2)設(shè)此人在行進途中離B城的距離為s(千米),行進時間為t(),就(1)所選定的方案,試寫出st之間的函數(shù)關(guān)系式(注明自變量t的取值范圍),并在如圖所示的平面直角坐標(biāo)系中畫出函數(shù)的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1,O2,O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標(biāo)是(  )

A. (2019,0) B. (2019,-1) C. (2019,1) D. (2018,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進價為每件20元,售價為每件25元時,每天可賣出250件.市場調(diào)查反映:如果調(diào)整價格,一件商品每漲價1元,每天要少賣出10件.
(1)求出每天所得的銷售利潤w(元)與每件漲價x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該商品每天的銷售利潤最大;
(3)商場的營銷部在調(diào)控價格方面,提出了A,B兩種營銷方案.
方案A:每件商品漲價不超過5元;
方案B:每件商品的利潤至少為16元.
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個頂點都在格點上,點A、B、C的坐標(biāo)分別為(﹣2,4)、(﹣2,0)、(﹣4,1),將△ABC繞原點O旋轉(zhuǎn)180度得到△A1B1C1 . 結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

(1)畫出△A1B1C1;
(2)畫出一個△A2B2C2 , 使它分別與△ABC,△A1B1C1軸對軸(其中點A,B,C與點A2 , B2 , C2對應(yīng));
(3)在(2)的條件下,若過點B的直線平分四邊形ACC2A2的面積,請直接寫出該直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖BD為△ABC的角平分線,且BD=BC, E為BD延長線上一點,BE=BA,

過E作EF⊥AB于F,下列結(jié)論:

①△ABD≌△EBC ;②∠BCE+∠BDC=180°;

③AD=AE=EC;④AB//CE ;

⑤BA+BC=2BF.其中正確的是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)

(1)畫出格點ABC(頂點均在格點上)關(guān)于直線DE對稱的A1B1C1

(2)在DE上畫出點Q,使QA+QC最小.

查看答案和解析>>

同步練習(xí)冊答案