【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫(huà)圖,保留痕跡)
(1)畫(huà)出格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)關(guān)于直線DE對(duì)稱(chēng)的△A1B1C1;
(2)在DE上畫(huà)出點(diǎn)Q,使QA+QC最。
【答案】(1)畫(huà)圖見(jiàn)解析;(2)畫(huà)圖見(jiàn)解析.
【解析】試題分析:(1)從三角形各頂點(diǎn)向DE引垂線并延長(zhǎng)相同的長(zhǎng)度,找到對(duì)應(yīng)點(diǎn),順次連接;
(2)利用軸對(duì)稱(chēng)圖形的性質(zhì)可作點(diǎn)A關(guān)于直線DE的對(duì)稱(chēng)點(diǎn)A1,連接BA1,交直線DE于點(diǎn)Q,點(diǎn)Q即為所求.
試題解析:(1)如圖所示:
從△ABC各頂點(diǎn)向DE引垂線并延長(zhǎng)相同的長(zhǎng)度,找到對(duì)應(yīng)點(diǎn),順次連接即可得△A1B1C1;
(2)如圖所示:
利用軸對(duì)稱(chēng)圖形的性質(zhì)可得點(diǎn)A關(guān)于直線DE的對(duì)稱(chēng)點(diǎn)A1,
連接A1B,交直線DE于點(diǎn)Q,點(diǎn) Q即為所求,此時(shí)△QAB的周長(zhǎng)最。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是該拋物線上不同的三點(diǎn),現(xiàn)將拋物線的對(duì)稱(chēng)軸繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線a,過(guò)拋物線頂點(diǎn)P作PH⊥a于H.
(1)用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);
(2)若無(wú)論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個(gè)公共點(diǎn),求k的值;
(3)當(dāng)1<PH≤6時(shí),試比較y1,y2,y3之間的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE⊥AC、CF⊥AB于點(diǎn)E、F,BE與CF交于點(diǎn)D,DE=DF,連接AD.
求證:(1)∠FAD=∠EAD;
(2)BD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點(diǎn)M,若H是AC的中點(diǎn),連接MH.
(1)求證:MH為⊙O的切線.
(2)若MH=,tan∠ABC=,求⊙O的半徑.
(3)在(2)的條件下分別過(guò)點(diǎn)A、B作⊙O的切線,兩切線交于點(diǎn)D,AD與⊙O相切于N點(diǎn),過(guò)N點(diǎn)作NQ⊥BC,垂足為E,且交⊙O于Q點(diǎn),求線段NQ的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,D、E為垂足,BD與CE交于點(diǎn)O,則圖中全等三角形共有_________對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形三邊長(zhǎng)分別為2,x,5,若x為整數(shù),則這樣的三角形個(gè)數(shù)為( )
A.2B.3C.4D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com