【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個頂點都在格點上,點A、B、C的坐標分別為(﹣2,4)、(﹣2,0)、(﹣4,1),將△ABC繞原點O旋轉(zhuǎn)180度得到△A1B1C1 . 結(jié)合所給的平面直角坐標系解答下列問題:
(1)畫出△A1B1C1;
(2)畫出一個△A2B2C2 , 使它分別與△ABC,△A1B1C1軸對軸(其中點A,B,C與點A2 , B2 , C2對應(yīng));
(3)在(2)的條件下,若過點B的直線平分四邊形ACC2A2的面積,請直接寫出該直線的函數(shù)解析式.
【答案】
(1)解:如圖1所示:
(2)解:如圖1所示:直線解解析式為y=0;
如圖2所示:
(3)解:經(jīng)過點B和(0,2.5)的直線平分四邊形ACC2A2的面積,
設(shè)直線的解析式為y=kx+b,
將(﹣2,0)和(0,2.5)代入得: ,
解得:
直線的解析式為y= .
綜上所述:直線的解析式為y=0或y= .
【解析】(1)首先由旋轉(zhuǎn)的性質(zhì)求得對應(yīng)點的坐標,然后畫出圖形即可;(2)由軸對稱圖形的性質(zhì)找出對應(yīng)點的坐標,然后畫出圖形即可;(3)分別畫出三角形關(guān)于x軸對稱和關(guān)于y軸對稱的圖形,然后再找出過點B平分四邊形面積的直線,最后求得解析式即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你認為月球上有水嗎?如圖是對某中學(xué)八年級的140名男生的調(diào)查結(jié)果.
(1)認為“有水”的頻數(shù)為________,認為“沒有水”的頻數(shù)是_______,認為“不知道”的頻數(shù)是_______;
(2)認為“有水”的頻率為_______,認為“沒有水”的頻率是______,認為“不知道”的頻率是_______,頻率之和為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(0,5),直線x=-5與x軸交于點D,直線y=-x-與x軸及直線x=-5分別交于點C,E.點B,E關(guān)于x軸對稱,連接AB.
(1)求點C,E的坐標及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復(fù)驗算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某同學(xué)在課下設(shè)計的一款軟件,藍精靈從點O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到達A2n后,要向________方向跳________個單位長度落到A2n+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A(﹣1,0)、B(3,0)兩點,交y軸于點C,連接BC,動點P以每秒1個單位長度的速度從A向B運動,動點Q以每秒 個單位長度的速度從B向C運動,P、Q同時出發(fā),連接PQ,當點Q到達C點時,P、Q同時停止運動,設(shè)運動時間為t秒.
(1)求二次函數(shù)的解析式;
(2)如圖1,當△BPQ為直角三角形時,求t的值;
(3)如圖2,過點Q作QN⊥x軸于N,交拋物線于點M,連結(jié)MC,MB,當t為何值時,△MCB的面積最大,并求出此時點M的坐標和△MCB面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一動點,G是BC邊上的一動點,GE∥AD分別交AC、BA或其延長線于F、E兩點
(1)如圖1,當BC=5BD時,求證:EG⊥BC;
(2)如圖2,當BD=CD時,F(xiàn)G+EG是否發(fā)生變化?證明你的結(jié)論;
(3)當BD=CD,F(xiàn)G=2EF時,DG的值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,點D是邊BC上任意一點,連接AD,過點C作CE⊥AD于點E.
(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;
(2)如圖2,過點C作CF⊥CE,且CF=CE,連接BF,
求證:AE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、C、B、D在同一條直線上,AC=BD,AM=CN,BM=DN,
求證:(1)△ABM ≌△CDN; (2)AM∥CN.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com