【題目】如圖,已知A(﹣4,0.5),B(﹣1,2)是一次函數(shù)y=ax+b與反比例函數(shù) (m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.

(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).

【答案】
(1)

解:當(dāng)﹣4<x<﹣1時(shí),一次函數(shù)大于反比例函數(shù)的值;


(2)

解:把A(﹣4,0.5),B(﹣1,2)代入y=kx+b得,

,解得

所以一次函數(shù)解析式為y= x+ ;

把B(﹣1,2)代入 ,得m=﹣1×2=﹣2;


(3)

解:連接PC、PD,如圖,設(shè)P點(diǎn)坐標(biāo)為(t, t+ ).

∵△PCA和△PDB面積相等,

(t+4)= 1(2﹣ t﹣ ),

解得t=﹣ ,

∴P點(diǎn)坐標(biāo)為(﹣ ).


【解析】(1)觀察函數(shù)圖象得到當(dāng)﹣4<x<﹣1時(shí),一次函數(shù)圖象都在反比例函數(shù)圖象上方;(2)先利用待定系數(shù)法求一次函數(shù)解析式,然后把B點(diǎn)坐標(biāo)代入 可計(jì)算出m的值;(3)設(shè)P點(diǎn)坐標(biāo)為(t, t+ ),利用三角形面積公式可得到 (t+4)= 1(2﹣ t﹣ ),解方程得到t=﹣ ,從而可確定P點(diǎn)坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一次函數(shù)的概念的相關(guān)知識(shí),掌握一般地,如果y=kx+b(k,b是常數(shù),k不等于0),那么y叫做x的一次函數(shù),以及對(duì)一次函數(shù)的圖象和性質(zhì)的理,了解一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問(wèn)題:

(1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡(jiǎn));
(2)由(1),你能得到怎樣的等量關(guān)系?請(qǐng)用等式表示;
(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.

(1)△ABC的面積等于;
(2)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請(qǐng)你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡(jiǎn)要說(shuō)明畫圖方法(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面積;

(2)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1

(3)寫出點(diǎn)A1,B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為∠AOB內(nèi)一定點(diǎn),M,N分別是射線OA,OB上一點(diǎn),當(dāng)PMN周長(zhǎng)最小時(shí),∠OPM=50°,則∠AOB=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)是(﹣1,0),并且OA=OC=4OB,動(dòng)點(diǎn)P在過(guò)A,B,C三點(diǎn)的拋物線上.

(1)求拋物線的解析式;
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),寫出點(diǎn)P的坐標(biāo)(不要求寫解題過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人從A城出發(fā),前往距離A30千米的B城.現(xiàn)在有三種方案供他選擇:

①騎自行車,其速度為15千米/時(shí);

②蹬三輪車,其速度為10千米/時(shí);

③騎摩托車,其速度為40千米/時(shí).

(1)選擇哪種方式能使他從A城到達(dá)B城的時(shí)間不超過(guò)2小時(shí)?請(qǐng)說(shuō)明理由;

(2)設(shè)此人在行進(jìn)途中離B城的距離為s(千米),行進(jìn)時(shí)間為t(時(shí)),就(1)所選定的方案,試寫出st之間的函數(shù)關(guān)系式(注明自變量t的取值范圍),并在如圖所示的平面直角坐標(biāo)系中畫出函數(shù)的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件25元時(shí),每天可賣出250件.市場(chǎng)調(diào)查反映:如果調(diào)整價(jià)格,一件商品每漲價(jià)1元,每天要少賣出10件.
(1)求出每天所得的銷售利潤(rùn)w(元)與每件漲價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該商品每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部在調(diào)控價(jià)格方面,提出了A,B兩種營(yíng)銷方案.
方案A:每件商品漲價(jià)不超過(guò)5元;
方案B:每件商品的利潤(rùn)至少為16元.
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.

(1)求證:DE是⊙O的切線;
(2)若DE=6,AE= ,求⊙O的半徑;
(3)在第(2)小題的條件下,則圖中陰影部分的面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案