【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA=2,OC=6,在OC上取點(diǎn)D將△AOD沿AD翻折,使O點(diǎn)落在AB邊上的E點(diǎn)處,將一個(gè)足夠大的直角三角板的頂點(diǎn)P從D點(diǎn)出發(fā)沿線(xiàn)段DA→AB移動(dòng),且一直角邊始終經(jīng)過(guò)點(diǎn)D,另一直角邊所在直線(xiàn)與直線(xiàn)DE,BC分別交于點(diǎn)M,N.

(1)填空:經(jīng)過(guò)A,B,D三點(diǎn)的拋物線(xiàn)的解析式是
(2)已知點(diǎn)F在(1)中的拋物線(xiàn)的對(duì)稱(chēng)軸上,求點(diǎn)F到點(diǎn)B,D的距離之差的最大值;
(3)如圖1,當(dāng)點(diǎn)P在線(xiàn)段DA上移動(dòng)時(shí),是否存在這樣的點(diǎn)M,使△CMN為等腰三角形?若存在,請(qǐng)求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)如圖2,當(dāng)點(diǎn)P在線(xiàn)段AB上移動(dòng)時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,﹣2),記△DBN的面積為S,請(qǐng)直接寫(xiě)出S與x之間的函數(shù)關(guān)系式,并求出S隨x增大而增大時(shí)所對(duì)應(yīng)的自變量x的取值范圍.

【答案】
(1)y=﹣ x2 x﹣2
(2)

解:∵點(diǎn)A,B關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),

∴FA=FB,

∴|FB﹣FD|=|FA﹣FD|,

∵|FA﹣FD|≤AD=2 ,

∴點(diǎn)F到點(diǎn)B,D的距離之差的最大值是2


(3)

解:存在點(diǎn)M使△CMN為等腰三角形,理由如下:

由翻折可知四邊形AODE為正方形,過(guò)M作MH⊥BC于H,

∵∠PDM=∠PMD=45°,則∠NMH=∠MNH=45°,NH=MH=4,MN=4 ,

∵直線(xiàn)OE的解析式為:y=x,依題意得MN∥OE,∴設(shè)MN的解析式為y=x+b,

而DE的解析式為x=﹣2,BC的解析式為x=﹣6,

∴M(﹣2,﹣2+b),N(﹣6,﹣6+b),CM2=42+(﹣2+b)2,CN2=(﹣6+b)2,MN2=(4 2=32,

①當(dāng)CM=CN時(shí),42+(﹣2+b)2=(﹣6+b)2,解得:b=2,此時(shí)M(﹣2,0);

②當(dāng)CM=MN時(shí),42+(﹣2+b)2=32,解得:b1=﹣2,b2=6(不合題意舍去),此時(shí)M(﹣2,﹣4);

③當(dāng)CN=MN時(shí),6﹣b=4 ,解得:b=﹣4 +6,此時(shí)M(﹣2,4﹣4 );

綜上所述,使△CMN為等腰三角形的M點(diǎn)的坐標(biāo)為:(﹣2,0),(﹣2,﹣4),(﹣2,4﹣4 );


(4)

解:當(dāng)﹣2≤x≤0時(shí),∵∠BPN+∠DPE=90°,∠BPN+∠BNP=90°,

∴∠DPE=∠BNP,又∠PED=∠NBP=90°,

∴△DEP∽△PBN,

= ,

=

∴BN= ,

∴SDBN= BN×BE= × ×4,整理得:S=x2+8x+12;

當(dāng)﹣6≤x<﹣2時(shí),

∵△PBN∽△DEP,

= ,

= ,

∴BN=

∴SDBN= BN×BE= × ×4,整理得:S=﹣x2﹣8x﹣12;

則S與x之間的函數(shù)關(guān)系式:S= ,

①當(dāng)﹣2≤x≤0時(shí),S=x2+8x+12=(x+4)2﹣4,當(dāng)x≥﹣4時(shí),S隨x的增大而增大,即﹣2≤x≤0,

②當(dāng)﹣6≤x<﹣2時(shí),S=﹣x2﹣8x﹣12=﹣(x+4)2+4,當(dāng)x≤﹣4時(shí),S隨x的增大而增大,即﹣6≤x≤﹣4,

綜上所述:S隨x增大而增大時(shí),﹣2≤x≤0或﹣6≤x≤﹣4.


【解析】解:(1)設(shè)拋物線(xiàn)解析式為y=ax2+bx+c(a≠0),
∵將△AOD沿AD翻折,使O點(diǎn)落在AB邊上的E點(diǎn)處,
∴∠OAD=∠EAD=45°,DE=OD,
∴OA=OD,
∵OA=2,
∴OD=2,
∴D點(diǎn)坐標(biāo)是(2,0),
把A(0,﹣2),B(﹣6,﹣2),D(2,0)分別代入y=ax2+bx+c(a≠0),得
,解得 ,
故拋物線(xiàn)解析式為:y=﹣ x2 x﹣2.
故答案是:y=﹣ x2 x﹣2;
【考點(diǎn)精析】通過(guò)靈活運(yùn)用相似三角形的應(yīng)用,掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,△EBC是等邊三角形.

(1)求證:△ABE≌△DCE;

(2)求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.

(1)若∠DBC=25°,求∠ADC′的度數(shù);

(2)若AB=4,AD=8,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.

(1)△ABC的面積為_(kāi)_____;

(2)將△ABC經(jīng)過(guò)平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′,補(bǔ)全△A′B′C′;

(3)若連接AA′BB′,則這兩條線(xiàn)段之間的關(guān)系是______;

(4)在圖中畫(huà)出△ABC的高CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2), (2,2)···根據(jù)這個(gè)規(guī)律,第140個(gè)點(diǎn)的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】麗商場(chǎng)銷(xiāo)售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤(rùn)為600元;售出3件A種商品和5件B種商品所得利潤(rùn)為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤(rùn)分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場(chǎng)決定再一次購(gòu)進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤(rùn)不低于4000元,那么麗商場(chǎng)至少需購(gòu)進(jìn)多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線(xiàn)AB∥CD,點(diǎn)E,F分別在直線(xiàn)AB,CD上,點(diǎn)M為平面內(nèi)一點(diǎn).

(1)如圖1,∠AEM,∠M,∠CFM的數(shù)量關(guān)系為 ;(直接寫(xiě)出答案)

(2)如圖2,∠AEM=48°,MN平分∠EMF,F(xiàn)H平分∠MFC,MK∥FH,求∠NMK的度數(shù);

(3)如圖3,點(diǎn)P為CD上一點(diǎn),∠BEF=n·∠MEF,∠PMQ=n·∠PME,過(guò)點(diǎn)M作MN∥EF交AB于點(diǎn)N,請(qǐng)直接寫(xiě)出∠PMQ,∠BEF,∠PMN之間的數(shù)量關(guān)系.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知長(zhǎng)方形ABCD,AB=CD, BC=AD,P為長(zhǎng)方形ABCD邊上的動(dòng)點(diǎn),動(dòng)點(diǎn)PA出發(fā),沿著A→B→C→D運(yùn)動(dòng)到D點(diǎn)停止速度為2cm/s,設(shè)點(diǎn)P用的時(shí)間為xAPD的面積為y,yx的關(guān)系如圖2所示.

(1)AB=________cm, BC=______cm;

(2)寫(xiě)出時(shí),yx之間的關(guān)系式

(3)當(dāng)y=12時(shí),求x的值

(4)當(dāng)P在線(xiàn)段BC上運(yùn)動(dòng)時(shí),是否存在點(diǎn)P使得APD的周長(zhǎng)最小,若存在,求出此時(shí)∠APD的度數(shù),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線(xiàn)交AC于點(diǎn)D,且ED⊥AC.
(1)試判斷△ABC的形狀,并說(shuō)明理由;
(2)如圖2,若線(xiàn)段AB、DE的延長(zhǎng)線(xiàn)交于點(diǎn)F,∠C=75°,CD=2﹣ ,求⊙O的半徑和BF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案