【題目】平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1(x>0)的圖象上,點A′與點A關(guān)于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.

(1)設a=2,點B(4,2)在函數(shù)y1、y2的圖象上.

①分別求函數(shù)y1、y2的表達式;

②直接寫出使y1>y2>0成立的x的范圍;

(2)如圖①,設函數(shù)y1、y2的圖象相交于點B,點B的橫坐標為3a,AA'B的面積為16,求k的值;

(3)設m=,如圖②,過點AADx軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.

【答案】(1)y1=,y2=x﹣2;2<x<4;(2)k=6;(3)證明見解析.

【解析】(1)由已知代入點坐標即可;

(2)面積問題可以轉(zhuǎn)化為△AOB面積,用a、k表示面積問題可解;

(3)設出點A、A′坐標,依次表示AD、AF及點P坐標.

(1)①由已知,點B(4,2)在y1(x>0)的圖象上

∴k=8

∴y1=

∵a=2

∴點A坐標為(2,4),A′坐標為(﹣2,﹣4)

把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,

,

解得,

∴y2=x﹣2;

②當y1>y2>0時,y1=圖象在y2=x﹣2圖象上方,且兩函數(shù)圖象在x軸上方,

∴由圖象得:2<x<4;

(2)分別過點A、B作AC⊥x軸于點C,BD⊥x軸于點D,連BO,

∵O為AA′中點,

S△AOB=S△AOA′=8

∵點A、B在雙曲線上

∴S△AOC=S△BOD

∴S△AOB=S四邊形ACDB=8

由已知點A、B坐標都表示為(a,)(3a,

解得k=6;

(3)由已知A(a,),則A′為(﹣a,﹣).

把A′代入到y(tǒng)=,得:﹣,

∴n=

∴A′B解析式為y=﹣.

當x=a時,點D縱坐標為,

∴AD=

∵AD=AF,

∴點F和點P橫坐標為,

∴點P縱坐標為.

∴點P在y1(x>0)的圖象上.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD,ABC=BCD=90°,EBC邊上,AED=90°

(1)求證:BAE=CED;(2)AB+CD=DE,求證:AE+BE=CE

(3)(2)的條件下,CDEABE的面積的差為18,CD=6,BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1,∠2互為補角,且∠3=B,

(1)求證:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,點A的坐標為(9,6),ABy軸,垂足為B,點P從原點O出發(fā)向x軸正方向運動,同時,點Q從點A出發(fā)向點B運動,當點Q到達點B時,點P、Q同時停止運動,若點P與點Q的速度之比為1:2,則下列說法正確的是( 。

A. 線段PQ始終經(jīng)過點(2,3)

B. 線段PQ始終經(jīng)過點(3,2)

C. 線段PQ始終經(jīng)過點(2,2)

D. 線段PQ不可能始終經(jīng)過某一定點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A(m,2)在直線:y=2x上,過點A的直線x軸交于點B(4,0).

(1)求直線的解析式;

(2)己知點P.的坐標為(n,0,過點P垂直x軸的直線與,分別交于點C,D,當點C位于點D上方時,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(探索發(fā)現(xiàn))有絕對值的定義可得,數(shù)軸上表示數(shù)的點到原點的距離為.小麗進一步探究發(fā)現(xiàn),在數(shù)軸上,表示35的兩點之間的距離為;表示5的兩點之間的距離為;表示的兩點之間的距離為.

(概括總結(jié))根據(jù)以上過程可以得出:數(shù)軸上,表示數(shù)和數(shù)的兩點之間的距離為.

(問題解決)

1)若,則________

2)若,則________;

3)若,則________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在RtABC中,∠BAC=90°,AB≥AC,D,E分別為AC,BC邊上的點(不包括端點),且==m,連結(jié)AE,過點DDMAE,垂足為點M,延長DMAB于點F.

(1)如圖1,過點EEHAB于點H,連結(jié)DH.

①求證:四邊形DHEC是平行四邊形;

②若m=,求證:AE=DF;

(2)如圖2,若m=,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】來自某綜合市場財務部的報告表明,商場201414月份的投資總額一共是2065萬元,商場2014年第一季度每月利潤統(tǒng)計圖和201414月份利潤率統(tǒng)計圖如下(利潤率=利潤÷投資金額).則商場20144月份利潤是__萬元.

查看答案和解析>>

同步練習冊答案