【題目】如圖物體由兩個圓錐組成.其主視圖中,,,若上面圓錐的側(cè)面積為,則下面圓錐的側(cè)面積為( )
A.2B.C.D.
【答案】A
【解析】
先證明△ABD為等腰直角三角形得到∠ABD=45°,BD=AB,再證明△CBD為等邊三角形得到BC=BD=AB,利用圓錐的側(cè)面積的計算方法得到上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于AB:CB,從而得到下面圓錐的側(cè)面積.
解:∵∠A=90°,AB=AD,
∴△ABD為等腰直角三角形,
∴∠ABD=45°,BD=AB,
∵∠ABC=105°,
∴∠CBD=60°,
而CB=CD,
∴△CBD為等邊三角形,
∴BC=BD=AB,
∵上面圓錐與下面圓錐的底面相同,
∴上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于AB:CB,
∴下面圓錐的側(cè)面積=.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會準(zhǔn)備調(diào)查七年級學(xué)生參加“武術(shù)類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).
類別 | 頻數(shù)(人數(shù)) | 頻率 |
武術(shù)類 | 0.20 | |
書畫類 | 15 | 0.l5 |
棋牌類 | 25 | |
器樂類 | ||
合計 | 1.00 |
(1)確定調(diào)查方式時,甲同學(xué)說:“我到七年級(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說:“放學(xué)時我到校門口隨機(jī)調(diào)查部分同學(xué)”;丙同學(xué)說:“我到七年級每個班隨機(jī)調(diào)查一定數(shù)量的同學(xué)”.請指出哪位同學(xué)的調(diào)查方式最合理.
(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.請你根據(jù)以上圖表提供的信息解答下列問題:
①____,_____;
②在扇形統(tǒng)計圖中,器樂類所對應(yīng)扇形的圓心角是_____度;
③若該校七年級有學(xué)生460人,請你估計大約有多少學(xué)生參加武術(shù)類校本課程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,平分,與對角線相交于點,是線段的中點,則下列結(jié)論中:①;②;③;④,正確的有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,過上到點的距離為1,3,5,7,…的點作的垂線,分別與相交,得到圖所示的陰影梯形,它們的面積依次記為,,….則(1)_______________;(2)通過計算可得______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:為的直徑,為圓弧上一點,垂直于過點的切線,垂足為,的延長線交直線于點.,垂足為點.
(1)如圖1,求證:;
(2)如圖2,若,連接交于點,且時,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年疫情防控期間,我市一家服裝有限公司生產(chǎn)了一款服裝,為對比分析以前實體商店和現(xiàn)在網(wǎng)上商店兩種途徑的銷售情況,進(jìn)行了為期30天的跟蹤調(diào)查.其中實體商店的日銷售量(百件)與時間(為整數(shù),單位:天)的部分對應(yīng)值如下表所示;網(wǎng)上商店的日銷售量(百件)與時間(為整數(shù),單位:天)的關(guān)系如圖所示.
時間(天) | 0 | 6 | 10 | 12 | 18 | 20 | 24 | 30 |
日銷售量(百件) | 0 | 72 | 100 | 108 | 108 | 100 | 72 | 0 |
(1)請你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)反映與的變化規(guī)律,并求出與的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在跟蹤調(diào)查的30天中,設(shè)實體商店和網(wǎng)上商店的日銷售總量為(百件),求與的函數(shù)關(guān)系式;當(dāng)為何值時,日銷售量達(dá)到最大,并求出此時的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某水產(chǎn)養(yǎng)殖戶開發(fā)一個三角形狀的養(yǎng)殖區(qū)域,A、B、C三點的位置如圖所示.已知∠CAB=105°,∠B=45°,AB=100米.(參考數(shù)據(jù):≈1.41,≈1.73,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,結(jié)果保留整數(shù))
(1)求養(yǎng)殖區(qū)域△ABC的面積;
(2)養(yǎng)殖戶計劃在邊BC上選一點D,修建垂釣棧道AD,測得∠CAD=40°,求垂釣棧道AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動,如圖,在一個坡度(坡比)的山坡上發(fā)現(xiàn)一棵古樹,測得古樹低端到山腳點的距離米,在距山腳點水平距離米的點處,測得古樹頂端的仰角(古樹與山坡的剖面、點在同一平面內(nèi),古樹與直線垂直),求古樹的高度約為多少米? (結(jié)果保留一位小數(shù),參考數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于 x 的方程 x2-(2k+1)x+k2+2k=0,有兩個實數(shù)根 x1,x2.
(1)求 k 的取值范圍;
(2)若方程的兩實數(shù)根 x1,x2 滿足 x1x2-x12-x22=-16,求實數(shù) k 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com