【題目】在菱形ABCD中,∠C=∠EDF=60°,AB=1,現(xiàn)將∠EDF繞點(diǎn)D任意旋轉(zhuǎn),分別交邊AB、BC于點(diǎn)E、F(不與菱形的頂點(diǎn)重合),連接EF,則△BEF的周長(zhǎng)最小值是_____.
【答案】1 +
【解析】
連接BD,根據(jù)菱形的性質(zhì)得到AD=AB=BC=CD,∠C=∠A=60°,由等邊三角形的判定定理即可得到結(jié)論;△ABD和△CBD都是等邊三角形,于是得到∠EBD=∠DBC=∠C=60°,BD=CD證得∠EDB=∠FDC,根據(jù)全等三角形的性質(zhì)得到DE=DF,BE=CF,證明△DEF是等邊三角形,根據(jù)等邊三角形的性質(zhì)得到DF=EF,得到BF+BE=BF+CF=1,得到當(dāng)DF⊥BC時(shí),求得,△BEF的周長(zhǎng)取得最小值.
連接BD,
∵四邊形ABCD是菱形,
∴AD=AB=BC=CD,∠C=∠A=60°,
∴△ABD和△CBD都是等邊三角形;
∴∠EBD=∠DBC=∠C=60°,BD=CD,
∵∠EDF=60°,
∴∠EDB=∠FDC,
在△BDE與△CDF中,
∴△BDE≌△CDF,
∴DE=DF,BE=CF,
∴△DEF是等邊三角形;
∴EF=DF,
∴BF+BE=BF+CF=1,
當(dāng)DF⊥BC時(shí),
此時(shí)△DEF的周長(zhǎng)取得最小值,
∴△DEF的周長(zhǎng)的最小值為:
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形 中,,點(diǎn)E為AD邊上一點(diǎn),連接BD、CE,CE與BD交于點(diǎn)F,且CE∥AB,若,則BC的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)B、C、E三點(diǎn)在同一條直線上, CD平分∠ACE, DB=DA,DM⊥BE于M.
(1)求證:AC=BM+CM;
(2)若AC=2,BC=1,求CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)作出△ABC關(guān)于直線L稱(chēng)軸對(duì)稱(chēng)的圖形。
(2)在上面中圖中找出點(diǎn)A,使它到M,N兩點(diǎn)的距離相等,并且到OH,OF的距離相等。
(3)如圖:直線m表示一條公路,A、B表示兩所大學(xué)。要在公路旁修建一個(gè)車(chē)站P使到兩所大學(xué)的距離相等,請(qǐng)?jiān)趫D上找出這點(diǎn)P。
(4)如圖:畫(huà)出△ABC關(guān)于Y軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出△A1B1C1各點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線經(jīng)過(guò)點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,解決問(wèn)題
材料一:《孟子》中記載有一尺之棰,日取其半,萬(wàn)世不竭,其中蘊(yùn)含了“有限”與“無(wú)限”的關(guān)系.如果我們要計(jì)算到第n天時(shí),累積取走了多長(zhǎng)的木棒?可以用下面兩種方法去解決:
方法一:第n天,留下了尺木棒,那么累積取走了尺木棒.
方法二:第1天取走了尺木棒,第2天取走了尺木棒,……第n天取走了尺木棒,那么累積取走了:尺木棒.
設(shè):……①
由①×得:……②
①-②得: 則:
材料二:關(guān)于數(shù)學(xué)家高斯的故事,200多年前,高斯的算術(shù)老師提出了下面的問(wèn)題:1+2+3+…+100=?據(jù)說(shuō)當(dāng)其他同學(xué)忙于把100個(gè)數(shù)逐項(xiàng)相加時(shí),十歲的高斯卻用下面的方法迅速算出了正確的答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.
也可以這樣理解:令S=1+2+3+4+…+100 ①,則S=100+99+98+…+3+2+1②
①+②得:2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×(1+100)
即
請(qǐng)用你學(xué)到的方法解決以下問(wèn)題:
(1)計(jì)算:;
(2)我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層的2倍,問(wèn)塔的頂層共有多少盞燈?
(3)某中學(xué)“數(shù)學(xué)社團(tuán)”開(kāi)發(fā)了一款應(yīng)用軟件,推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng),某一周,這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知一列數(shù)1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……其中第1項(xiàng)是,接下來(lái)的兩項(xiàng)是,,再接下來(lái)的三項(xiàng)是,,,以此類(lèi)推,求滿(mǎn)足如下條件的正整數(shù)N:,且這一列數(shù)前N項(xiàng)和為2的正整數(shù)冪,請(qǐng)求出所有滿(mǎn)足條件的軟件激活碼正整數(shù)N的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,ABCD中,∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形.
(2)如圖1,求AF的長(zhǎng).
(3)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止,在運(yùn)動(dòng)過(guò)程中,點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒0.8cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒,若當(dāng)以A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩艘海監(jiān)船剛好在某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國(guó)籍船只停在C處海域,AB=60(+3)海里,在B處測(cè)得C在北偏東45°方向上,A處測(cè)得C在北偏西30°方向上,在海岸線AB上有一等他D,測(cè)得AD=100海里.
(1)分別求出AC,BC(結(jié)果保留根號(hào))
(2)已知在燈塔D周?chē)?/span>80海里范圍內(nèi)有暗礁群,在A處海監(jiān)船沿AC前往C處盤(pán)看,圖中有無(wú)觸礁的危險(xiǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左側(cè),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).
求這個(gè)二次函數(shù)的表達(dá)式.
連接、,并把沿翻折,得到四邊形,那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形的面積最大?求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com