【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
【答案】(1);(2)45°;(3).
【解析】試題分析: 把點(diǎn)的坐標(biāo)代入即可求得拋物線的解析式.
作BH⊥AC于點(diǎn)H,求出的長度,即可求出∠ACB的度數(shù).
延長CD交x軸于點(diǎn)G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直線的方程,和拋物線的方程聯(lián)立即可求得點(diǎn)的坐標(biāo).
試題解析:(1)由題意,得
解得.
∴這條拋物線的表達(dá)式為.
(2)作BH⊥AC于點(diǎn)H,
∵A點(diǎn)坐標(biāo)是(-1,0),C點(diǎn)坐標(biāo)是(0,3),B點(diǎn)坐標(biāo)是(,0),
∴AC=,AB=,OC=3,BC=.
∵,即∠BAD= ,
∴.
Rt△ BCH中, ,BC=,∠BHC=90,
∴.
又∵∠ACB是銳角,∴.
(3)延長CD交x軸于點(diǎn)G,
∵Rt△ AOC中,AO=1,AC=,
∴.
∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.
∴AG = CG.
∴.
∴AG=5.∴G點(diǎn)坐標(biāo)是(4,0).
∵點(diǎn)C坐標(biāo)是(0,3),∴.
∴ 解得, (舍).
∴點(diǎn)D坐標(biāo)是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ACB的平分線交AD于E,交AB于F,FG⊥BC于G,請(qǐng)猜測(cè)AE與FG之間有怎樣的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明同學(xué)積極響應(yīng)學(xué)校號(hào)召,利用假期參加了班級(jí)組織的“研學(xué)旅行”活動(dòng),在參觀某紅色景區(qū)時(shí),李明站在臺(tái)階DF上發(fā)現(xiàn)了對(duì)面山坡BC上有一塊豎立的標(biāo)語牌AB,他在臺(tái)階頂端F處測(cè)得標(biāo)語牌頂點(diǎn)A的仰角為,標(biāo)語牌底端B的仰角為,如圖,已知臺(tái)階高EF為3米,山坡坡面BC的長為25米,山坡BC的坡度為1:,求標(biāo)語牌AB的高度結(jié)果精確到米,參考數(shù)據(jù),,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)D坐標(biāo),并直接寫出y1>y2時(shí)x的取值范圍;
(3)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b可以取﹣2、﹣1、1、2中任意一個(gè)值(a≠b),則直線y=ax+b的圖象不經(jīng)過第四象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OB平分∠CBA,CO平分∠ACB,且MN∥BC,設(shè)AB=12,BC=24,AC=18,則△AMN的周長為( )
A.30 B.33 C.36 D.39
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD(四邊相等、四內(nèi)角相等)中,AD=5,點(diǎn)E、F是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=4,BE=DF=3,則EF的平方為( 。
A.2B.C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),在長方形OABC中,OC∥AB,OA∥BC,兩邊OC、OA分別在x軸和y軸上,且點(diǎn)B(a,b)滿足:+(2b+6)2=0.
(1)求點(diǎn)B的坐標(biāo);
(2)如圖1,若過點(diǎn)B的直線BP與長方形OABC的邊交于點(diǎn)P,且將長方形OABC的面積分為1:3兩部分,求點(diǎn)P的坐標(biāo);
(3)如圖2,M為線段OC一點(diǎn),且∠ABM=∠AMB,N是x軸負(fù)半軸上一動(dòng)點(diǎn),∠MAN的平分線AD交BM的延長線于點(diǎn)D,在點(diǎn)N運(yùn)動(dòng)的過程中,試判斷∠ANM與∠D的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com