【題目】如圖,邊長(zhǎng)為24的等邊三角形ABC中,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連結(jié)MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連結(jié)HN.則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線段HN長(zhǎng)度的最小值是( 。
A. 12B. 6C. 3D. 1
【答案】B
【解析】
取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BD=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對(duì)應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時(shí)最短,再根據(jù)∠BCH=30°求解即可.
如圖,取BC的中點(diǎn)G,連接MG,
∵旋轉(zhuǎn)角為60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等邊△ABC的對(duì)稱(chēng)軸,
∴HB=AB,
∴HB=BG,
又∵MB旋轉(zhuǎn)到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根據(jù)垂線段最短,當(dāng)MG⊥CH時(shí),MG最短,即HN最短,
此時(shí)∠BCH=×60°=30°,CG=AB=×24=12,
∴MG=CG=×12=6,
∴HN=6,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中與①相似的是( )
A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=∠ADC=90°,∠BAD=45°,E、F分別是AC、BD的中點(diǎn).若AC=2,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別是E、F,BE=CF.
(1)圖中共有_________對(duì)全等三角形.
(2)求證:AD是△ABC的角平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,平分交于點(diǎn).
(1)如圖①,若于點(diǎn),,求的度數(shù);
(2)如圖②,若交于點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),過(guò)點(diǎn)作軸,交拋物線于點(diǎn),并過(guò)點(diǎn)作軸,垂足為.拋物線和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn),四邊形的面積是.
求反比例函數(shù)、二次函數(shù)的解析式及拋物線的對(duì)稱(chēng)軸;
如圖,點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位的速度沿線段向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)以相同的速度沿線段img src="http://thumb.zyjl.cn/questionBank/Upload/2019/05/12/08/1a8f9afd/SYS201905120854095644903087_ST/SYS201905120854095644903087_ST.023.png" width="24" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />向點(diǎn)運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
①當(dāng)為何值時(shí),四邊形為等腰梯形;
②設(shè)與對(duì)稱(chēng)軸的交點(diǎn)為,過(guò)點(diǎn)作軸的平行線交于點(diǎn),設(shè)四邊形的面積為,求面積關(guān)于時(shí)間的函數(shù)解析式,并指出的取值范圍;當(dāng)為何值時(shí),有最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n(m<n)是關(guān)于x的方程(x–a)(x–b)=2的兩根,若a<b,則下列判斷正確的是
A. a<m<b<n B. m<a<n<b
C. a<m<n<d D. m<a<b<n
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y=上一點(diǎn),過(guò)A作AB∥x軸,交直線y=﹣x于點(diǎn)B,點(diǎn)D是x軸上一點(diǎn),連接BD交雙曲線于點(diǎn)C,連接AD,若BC:CD=3:2,△ABD的面積為,tan∠ABD=,則k的值為( 。
A. ﹣2 B. ﹣3 C. ﹣ D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com