【題目】12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點GOC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);

若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

【答案】1)見解析;(230°150°, 的長最大值為,此時

【解析】

試題分析: (1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運(yùn)用等量代換證明∠AHE=90°即可;

(2)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當(dāng)∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當(dāng)∠OAG′=90°時,α=150°;

②當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=+2,此時α=315°.

試題解析:

(1)如圖1,延長EDAG于點H,

∵點O是正方形ABCD兩對角線的交點,

OA=OD,OAOD,

OG=OE,

AOGDOE中,

,

AOGDOE,

∴∠AGO=DEO,

∵∠AGO+GAO=90°

∴∠GAO+DEO=90°,

∴∠AHE=90°,

DEAG;

(2)①在旋轉(zhuǎn)過程中,OAG′成為直角有兩種情況:

(0°增大到90°過程中,當(dāng)∠OAG′=90°時,

OA=OD=OG=OG′,

∴在RtOAG′,sinAG′O==

∴∠AG′O=30°,

OAOD,OAAG′,

ODAG′,

∴∠DOG′=AG′O=30°,

α=30°

(90°增大到180°過程中,當(dāng)∠OAG′=90°時,

同理可求∠BOG′=30°,

α=180°30°=150°.

綜上所述,當(dāng)∠OAG′=90°,α=30°150°.

②如圖3,當(dāng)旋轉(zhuǎn)到A.O、F′在一條直線上時,AF′的長最大,

∵正方形ABCD的邊長為1,

OA=OD=OC=OB=,

OG=2OD,

OG′=OG=,

OF′=2,

AF′=AO+OF′=+2,

∵∠COE′=45°,

∴此時α=315°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程①和②問是否存在這樣的n值,使方程①的兩個實數(shù)根的差的平方等于方程②的一整數(shù)根?若存在,求出這樣的n值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項式能被整除,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形,

畫出矩形繞點逆時針旋轉(zhuǎn)后的矩形,并寫出的坐標(biāo)為________,點運(yùn)動到點所經(jīng)過的路徑的長為________;

若點的坐標(biāo)為,則點的坐標(biāo)為________,請畫一條直線平分矩形組成圖形的面積(保留必要的畫圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC分別沿AB,AC翻折得到ABD AEC,線段BDAE交于點 F,連接BE .

1)如果∠ABC=16,∠ACB=30°,求∠DAE的度數(shù);

2)如果BDCE,求∠CAB 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=(x-1)2-1.

(1)該拋物線的對稱軸是______________,頂點坐標(biāo)為____________;

(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表并在圖中的直角坐標(biāo)系內(nèi)描點畫出該拋物線;

x

y

(3)根據(jù)圖象,直接寫出當(dāng)y<0,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位同學(xué)用圍棋子做游戲.如圖所示,現(xiàn)輪到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的個棋子組成軸對稱圖形,白棋的個棋子也成軸對稱圖形.則下列下子方法不正確的是( ),

A. (3,7);白(5,3) B. (4,7);白(6,2)

C. (2,7);白(5,3) D. (3,7);白(2,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為24的等邊三角形ABC中,M是高CH所在直線上的一個動點,連結(jié)MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連結(jié)HN.則在點M運(yùn)動過程中,線段HN長度的最小值是( 。

A. 12B. 6C. 3D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系的原點是正方形的中心,頂點的坐標(biāo)分別為、,把正方形繞原點逆時針旋轉(zhuǎn)得到正方形,則正方形與正方形重疊部分形成的正八邊形的邊長為(

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊答案