【題目】已知y1=a1x2+b1x+c1,y2=a2x2+b2x+c2且滿足 (k≠0,1).則稱拋物線y1,y2互為“友好拋物線”,則下列關(guān)于 “友好拋物線”的說法不正確的是( )
A. y1,y2開口方向、開口大小不一定相同
B. 因為y1,y2的對稱軸相同
C. 如果y2的最值為m,則y1的最值為km
D. 如果y2與x軸的兩交點間距離為d,則y1與x軸的兩交點間距離為|k|d
【答案】D
【解析】
根據(jù)友好拋物線的條件,a1、a2的符號不一定相同,即可得到開口方向、開口大小不一定相同,代入對稱軸和,即可判斷B、C,根據(jù)根與系數(shù)的關(guān)系求出與x軸的兩交點的距離|g-e|和|d-m|,即可判斷D.
由已知可知:a1=ka2,b1=kb2,c1=kc2,
A. 根據(jù)友好拋物線的條件,a1、a2的符號不一定相同,所以開口方向、開口大小不一定相同,故本選項錯誤;
B. 因為代入得到對稱軸相同,故本選項錯誤;
C. 因為如果y2的最值是m,則y1的最值是,故本選項錯誤;
D. 因為設(shè)拋物線y1與x軸的交點坐標是(e,0),(g,0),則,拋物線y2與x軸的交點坐標是(m,0),(d,0),則可求得:,所以這種說法不成立的,故本選項正確.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽光線與水平地面的夾角為α,當α=56.3°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的NF這層上曬太陽.
(1)求樓房的高度約為多少米?
(2)過了一會兒,當α=45°時,問小貓能否還曬到太陽?請說明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是邊長為8的等邊三角形,AD⊥BC下點D,DE⊥AB于點E
(1)求證:AE=3EB;
(2)若點F是AD的中點,點P是BC邊上的動點,連接PE,PF,如圖2所示,求PE+PF的最小值及此時BP的長;
(3)在(2)的條件下,連接EF,若AD=,當PE+PF取最小值時,△PEF的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個口袋里裝著白、紅、黑三種顏色的小球(除顏色外形狀大小完全相同),其中白球3個、紅球2個、黑球1個.
(1)隨機從袋中取出一個球,求取出的球是黑球的概率;
(2)若取出的第一只球是紅球,不將它放回袋里,從袋中余下的球中再隨機地取出1個,這時取出的球是黑球的概率是多少?
(3)若取出一個球,將它放回袋中,從袋中再隨機地取出一個球,兩次取出的球都是白球的概率是多少?(用列表法或樹狀圖計算)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請在右邊的平面直角坐標系中描出以下三點:、、并回答如下問題:
在平面直角坐標系中畫出△ABC;
在平面直角坐標系中畫出△A′B′C′;使它與關(guān)于x軸對稱,并寫出點C′的坐標______;
判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).
(1)求這個拋物線的解析式;
(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最?若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;
(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)二次函數(shù) y=ax2+bx﹣(a+b)(a,b 是常數(shù),a≠0).
(1)判斷該二次函數(shù)圖象與 x 軸的交點的個數(shù),說明理由.
(2)若該二次函數(shù)圖象經(jīng)過 A(﹣1,4),B(0,﹣1),C(1,1)三個點中的其中兩個點,求該二次函數(shù)的表達式.
(3)若 a+b<0,點 P(2,m)(m>0)在該二次函數(shù)圖象上,求證:a>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(1,0),點A關(guān)于原點的對稱點為點B.
(1)求點B的坐標;
(2)若以AB為一邊向上作有一個角為30°的直角三角形ABC,在給出的直角坐標系中作出所有的符合條件的六個三角形;
(3)將所作三角形中你認為好計算的兩個C點的坐標求出來或直接寫出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上任意一點,且CD切⊙O于點D.
(1)試求∠AED的度數(shù).
(2)若⊙O的半徑為cm,試求△ADE面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com