【題目】為了解某校學生的課余興趣愛好情況,某調(diào)查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結果繪制了如圖統(tǒng)計圖:

根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:

(1)本次抽樣調(diào)查中的學生人數(shù)是多少人;

(2 )補全條形統(tǒng)計圖;

(3)若該校共有2000名學生,請根據(jù)統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數(shù);

(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.

【答案】(1)本次抽樣調(diào)查中的學生人數(shù)為100人;(2)補全條形統(tǒng)計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數(shù)為800人;(4).

【解析】

(1)用選閱讀的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);

(2)先計算出選舞蹈的人數(shù),再計算出選打球的人數(shù),然后補全條形統(tǒng)計圖;

(3)用2000乘以樣本中選打球的人數(shù)所占的百分比可估計該校課余興趣愛好為打球的學生人數(shù);

(4)畫樹狀圖展示所有12種等可能的結果數(shù),再找出選到一男一女的結果數(shù),然后根據(jù)概率公式求解.

1)30÷30%=100,

所以本次抽樣調(diào)查中的學生人數(shù)為100人;

(2)選舞蹈的人數(shù)為100×10%=10(人),

打球的人數(shù)為100﹣30﹣10﹣20=40(人),

補全條形統(tǒng)計圖為:

(3)2000×=800,

所以估計該校課余興趣愛好為打球的學生人數(shù)為800人;

(4)畫樹狀圖為:

共有12種等可能的結果數(shù),其中選到一男一女的結果數(shù)為8,

所以選到一男一女的概率=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,RtABC中,∠A90°,ABAC,點DBC邊的中點連接AD,則易證ADBDCD,即ADBC;如圖2,若將題中ABAC這個條件刪去,此時AD仍然等于BC

理由如下:延長ADH,使得AH2AD,連接CH,先證得ABD≌△CHD,此時若能證得ABC≌△CHA,

即可證得AHBC,此時ADBC,由此可見倍長過中點的線段是我們?nèi)切巫C明中常用的方法.

1)請你先證明ABC≌△CHA,并用一句話總結題中的結論;

2)現(xiàn)將圖1ABC折疊(如圖3),點A與點D重合,折痕為EF,此時不難看出BDECDF都是等腰直角三角形.BEDE,CFDF.由勾股定理可知DE2+DF2EF2,因此BE2+CF2EF2,若圖2ABC也進行這樣的折疊(如圖4),此時線段BE、CF、EF還有這樣的關系式嗎?若有,請證明;若沒有,請舉反例.

3)在(2)的條件下,將圖3中的DEF繞著點D旋轉(zhuǎn)(如圖5),射線DE、DF分別交ABAC于點E、F,此時(2)中結論還成立嗎?請說明理由.圖4中的DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關系式是否成立.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩點,點,的半徑是,周長為,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖反映是小明從家去食堂吃早餐,接著去圖書館讀報,然后回家的過程.其中x表示時間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上.根據(jù)圖中提供的信息,解答下列問題:

1)食堂離小明家___________km;

2)小明在食堂吃早餐用了 分鐘,在圖書館讀報用了______min;

3)由圖象知:_________位于__________________之間( 小明家、食堂圖書館

4)求小明從圖書館回家的平均速度是多少千米/?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,點E在線段AC上,連接BE,點D在直線BC上,且CE=CD,連接EDAD,點FBE的中點,連接FA、FD

1)若CD=6,BC=10,求BEC的面積;

2)當AE=CE時,求證:AD=2AF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10 ,點E是點D關于AB的對稱點,MAB上的一動點,下列結論:①∠BOE=60°;②∠CED=AOD;DMCE;CM+DM的最小值是10,其中正確的序號是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射擊訓練班中的甲、乙兩名選手在5次射擊訓練中的成績依次為(單位:環(huán)):

甲:8,87,89

乙:5,9,710,9

教練根據(jù)他們的成績繪制了如下尚不完整的統(tǒng)計圖表:

選手

平均數(shù)

眾數(shù)

中位數(shù)

方差

8

b

8

0.4

α

9

c

3.2

根據(jù)以上信息,請解答下面的問題:

1α   ,b   ,c   

2)完成圖中表示乙成績變化情況的折線;

3)教練根據(jù)這5次成績,決定選擇甲參加射擊比賽,教練的理由是什么?

4)若選手乙再射擊第6次,命中的成績是8環(huán),則選手乙這6次射擊成績的方差與前5次射擊成績的方差相比會   .(填“變大”、“變小”或“不變”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習三角形知識時,發(fā)現(xiàn)如下三個有趣的結論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點,ME⊥BC,垂足為E,∠AME的平分線交直線AB于點F.

(1)如圖①,M為邊AC上一點,則BD、MF的位置關系是 ;

如圖②,M為邊AC反向延長線上一點,則BD、MF的位置關系是 ;

如圖③,M為邊AC延長線上一點,則BD、MF的位置關系是 ;

(2)請就圖①、圖②、或圖③中的一種情況,給出證明.

查看答案和解析>>

同步練習冊答案