【題目】如圖1,RtABC中,∠A90°,ABAC,點(diǎn)DBC邊的中點(diǎn)連接AD,則易證ADBDCD,即ADBC;如圖2,若將題中ABAC這個(gè)條件刪去,此時(shí)AD仍然等于BC

理由如下:延長(zhǎng)ADH,使得AH2AD,連接CH,先證得ABD≌△CHD,此時(shí)若能證得ABC≌△CHA

即可證得AHBC,此時(shí)ADBC,由此可見(jiàn)倍長(zhǎng)過(guò)中點(diǎn)的線段是我們?nèi)切巫C明中常用的方法.

1)請(qǐng)你先證明ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;

2)現(xiàn)將圖1ABC折疊(如圖3),點(diǎn)A與點(diǎn)D重合,折痕為EF,此時(shí)不難看出BDECDF都是等腰直角三角形.BEDE,CFDF.由勾股定理可知DE2+DF2EF2,因此BE2+CF2EF2,若圖2ABC也進(jìn)行這樣的折疊(如圖4),此時(shí)線段BE、CFEF還有這樣的關(guān)系式嗎?若有,請(qǐng)證明;若沒(méi)有,請(qǐng)舉反例.

3)在(2)的條件下,將圖3中的DEF繞著點(diǎn)D旋轉(zhuǎn)(如圖5),射線DEDF分別交AB、AC于點(diǎn)EF,此時(shí)(2)中結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.圖4中的DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.

【答案】(1)詳見(jiàn)解析;(2)有這樣分關(guān)系式;(3)EF2BE2+CF2.

【解析】

1)想辦法證明ABCH,推出∠BAC=∠ACH,再利用SAS證明ABC≌△CHA即可.

2)有這樣分關(guān)系式.如圖4中,延長(zhǎng)EDH山頂DHDE.證明EDB≌△HDSAS),推出∠B=∠HCD,BECH,∠FCH90°,利用勾股定理,線段的垂直平分線的性質(zhì)即可解決問(wèn)題.

3)圖5,圖6中,上面的關(guān)系式仍然成立.

1)證明:如圖2中,

BDDC,∠ADB=∠HDC,ADHD

∴△ADB≌△HDCSAS),

∴∠B=∠HCD,ABCH

ABCH,

∴∠BAC+ACH180°

∵∠BAC90°,

∴∠ACH=∠BAC90°,

ACCA,

∴△BAC≌△HCASAS),

AHBC,

ADDHBDDC,

ADBC

結(jié)論:直角三角形斜邊上的中線等于斜邊的一半.

2)解:有這樣分關(guān)系式.

理由:如圖4中,延長(zhǎng)EDH山頂DHDE

EDDH,∠EDB=∠HDC,DBDC

∴△EDB≌△HDCSAS),

∴∠B=∠HCD,BECH

∵∠B+ACB90°,

∴∠ACB+HCD90°,

∴∠FCH90°,

FH2CF2+CH2,

DFEHEDDH,

EFFH,

EF2BE2+CF2

3)圖5,圖6中,上面的關(guān)系式仍然成立.結(jié)論:EF2BE2+CF2

證明方法類似(2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題.

①(x2+3)(3x21

②(4x2y8x3y3)÷(﹣2x2y

③[(m+3)(m3)]2

102×100+105÷103

,其中x滿足x2x10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC平分鈍角∠BAE交過(guò)B點(diǎn)的直線于點(diǎn)C,BD平分∠ABCAC于點(diǎn)D,且∠BAD+ABD90°.

1)求證:AEBC;

2)點(diǎn)F是射線BC上一動(dòng)點(diǎn)(點(diǎn)F不與點(diǎn)BC重合),連接AF,與射線BD相交于點(diǎn)P

(ⅰ)如圖1,若∠ABC45°,AFAB,試探究線段BFCF之間滿足的數(shù)量關(guān)系;

(ⅱ)如圖2,若AB10,SABC30,∠CAF=∠ABD,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn),點(diǎn)上,連接

(1)如圖,若,,求的度數(shù);

(2),直接寫出 (的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=D=90°,在BCCD上分別找一點(diǎn)M,N,使三角形AMN周長(zhǎng)最小時(shí),則∠MAN的度數(shù)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,對(duì)于平面內(nèi)的點(diǎn)P和兩條曲線給出如下定義:若從點(diǎn)P任意引出一條射線分別與、交于、,總有是定值,我們稱曲線“曲似”,定值為“曲似比”,點(diǎn)P為“曲心”.

例如:如圖2,以點(diǎn)為圓心,半徑分別為、都是常數(shù)的兩個(gè)同心圓,從點(diǎn)任意引出一條射線分別與兩圓交于點(diǎn)M、N,因?yàn)榭傆?/span>是定值,所以同心圓曲似,曲似比為,“曲心”為

在平面直角坐標(biāo)系xOy中,直線與拋物線分別交于點(diǎn)A、B,如圖3所示,試判斷兩拋物線是否曲似,并說(shuō)明理由;

的條件下,以O為圓心,OA為半徑作圓,過(guò)點(diǎn)Bx軸的垂線,垂足為C,是否存在k值,使與直線BC相切?若存在,求出k的值;若不存在,說(shuō)明理由;

的條件下,若將“”改為“”,其他條件不變,當(dāng)存在與直線BC相切時(shí),直接寫出m的取值范圍及km之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商店只有雪碧、可樂(lè)、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購(gòu)買飲料,每種飲料被選中的可能性相同.

1)若他去買一瓶飲料,則他買到奶汁的概率是 ;

2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹(shù)狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.

(1)求每臺(tái)A型電腦和B型電腦的銷售利潤(rùn);

(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.

求y關(guān)于x的函數(shù)關(guān)系式;

該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生的課余興趣愛(ài)好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“舞蹈”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛(ài)好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計(jì)圖:

根據(jù)統(tǒng)計(jì)圖所提供的倍息,解答下列問(wèn)題:

(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;

(2 )補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有2000名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛(ài)好為“打球”的學(xué)生人數(shù);

(4)現(xiàn)有愛(ài)好舞蹈的兩名男生兩名女生想?yún)⒓游璧干,但只能選兩名學(xué)生,請(qǐng)你用列表或畫樹(shù)狀圖的方法,求出正好選到一男一女的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案