【題目】計算下列各題.

①(x2+3)(3x21

②(4x2y8x3y3)÷(﹣2x2y

③[(m+3)(m3)]2

102×100+105÷103

,其中x滿足x2x10

【答案】3x4+8x23;②﹣2+4xy2;③m418m2+81;④100;⑤;⑥,1

【解析】

①利用多項式乘以多項式進行計算即可;

②利用多項式除以單項式法則進行計算即可;

③首先利用平方差計算,再利用完全平方進行計算即可;

④首先計算同底數(shù)冪的乘除,再算加法即可;

⑤首先計算乘法,再算分式的加法即可;

⑥先算小括號里面的減法,再算除法,最后再計算減法即可.

解:原式,

;

原式;

原式;

原式;

原式,

,

;

,

,

,

,

,

,

,

,代入

原式

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉180°得到△EFC,連接AF、BE.

(1)求證:四邊形ABEF是平行四邊形;

(2)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,長方形的邊,分別在軸,軸上,點在邊上,將該長方形沿折疊,點恰好落在邊上的點處,若,則所在直線的表達式為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,C是O外一點,AB=AC,連接BC,交O于點D,過點D作DEAC,垂足為E.

(1)求證:DE與O相切.

(2)B=30°,AB=4,則圖中陰影部分的面積是   (結果保留根號和π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側作等邊ACD,連接BD,則BD所在直線與OA所在直線的位置關系是(  )

A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點AACx軸于點C,過點BBDx軸于點D.

(1)a,b的值及反比例函數(shù)的解析式;

(2)若點P在直線y=﹣x+2上,且SACP=SBDP,請求出此時點P的坐標;

(3)x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,AD BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點 E,過點 E EFAC,分別交 AB、AD 于點 F、G.則下列結論:①∠BAC90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B2AEF,其中正確的有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若ABC經過平移后得到,已知點的坐標為(4,0),寫出頂點的坐標;

(2)若ABC和關于原點O成中心對稱圖形,寫出的各頂點的坐標;

(3)將ABC繞著點O按順時針方向旋轉90°得到,寫出的各頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,RtABC中,∠A90°,ABAC,點DBC邊的中點連接AD,則易證ADBDCD,即ADBC;如圖2,若將題中ABAC這個條件刪去,此時AD仍然等于BC

理由如下:延長ADH,使得AH2AD,連接CH,先證得ABD≌△CHD,此時若能證得ABC≌△CHA,

即可證得AHBC,此時ADBC,由此可見倍長過中點的線段是我們三角形證明中常用的方法.

1)請你先證明ABC≌△CHA,并用一句話總結題中的結論;

2)現(xiàn)將圖1ABC折疊(如圖3),點A與點D重合,折痕為EF,此時不難看出BDECDF都是等腰直角三角形.BEDE,CFDF.由勾股定理可知DE2+DF2EF2,因此BE2+CF2EF2,若圖2ABC也進行這樣的折疊(如圖4),此時線段BE、CF、EF還有這樣的關系式嗎?若有,請證明;若沒有,請舉反例.

3)在(2)的條件下,將圖3中的DEF繞著點D旋轉(如圖5),射線DE、DF分別交AB、AC于點EF,此時(2)中結論還成立嗎?請說明理由.圖4中的DEF也這樣旋轉(如圖6),直接寫出上面的關系式是否成立.

查看答案和解析>>

同步練習冊答案