【題目】如圖,在平面直角坐標系中,點坐標為,點從點出發(fā)以1個單位長度/秒的速度沿軸正半軸方向運動,同時,點從點出發(fā)以1個單位長度/秒的速度沿軸負半軸方向運動,設(shè)點運動的時間為.為斜邊,向第一象限內(nèi)作等腰,連接.下列四個說法:

;②點坐標為;③四邊形的面積為16;④.其中正確的說法個數(shù)有(

A.4B.3C.2D.1

【答案】B

【解析】

根據(jù)題意,有OP=AQ,即可得到,①正確;當時,OP=OQ=4,此時四邊形PBQO是正方形,則PB=QB=OP=OQ=4,即點B坐標為(4,4),②正確;四邊形PBQO的面積為:,在P、Q運動過程面積沒有發(fā)生變化,故③正確;由正方形PBQO的性質(zhì),則此時對角線PQ=OB,故④錯誤;即可得到答案.

解:根據(jù)題意,點P與點Q同時以1個單位長度/秒的速度運動,

OP=AQ,

OQ+AQ=OA=8

OQ+OP=8,①正確;

由題意,點P與點Q運動時,點B的位置沒有變化,四邊形PBQO的面積沒有變化,

時,如圖:

AQ=OP=4

OQ=,

∴點B的坐標為:(4,4),②正確;

此時四邊形PBQO是正方形,則PB=QB=OP=OQ=4,

∴四邊形PBQO的面積為:,③正確;

∵四邊形PBQO是正方形,

PQ=OB,

即當時,PQ=OB,故④錯誤;

∴正確的有:①②③,共三個;

故選擇:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F(xiàn)分別是線段BM,CM的中點.

(1)求證:△ABM≌△DCM;

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當四邊形MENF是正方形時,求AD:AB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為全力助推句容建設(shè),大力發(fā)展句容旅游,某公司擬派A、B兩個工程隊共同建設(shè)某區(qū)域的綠化帶.已知A工程隊2人與B工程隊3人每天共完成310米綠化帶,A工程隊的5人與B工程隊的6人每天共完成700米綠化帶

(1)求A隊每人每天和B隊每人每天各完成多少米綠化帶;

(2)該公司決定派A、B工程隊共20人參與建設(shè)綠化帶,若每天完成綠化帶總量不少于1480米,且B工程至少派出2人,則有哪幾種人事安排方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司購進一種化工原料若干千克,價格為每千克元,物價部門規(guī)定其銷售單價每千克不高于元且不低于元,經(jīng)市場調(diào)查發(fā)現(xiàn),日銷售量(千克)是銷售單價(元)的一次函數(shù),且當時,,當時,

的函數(shù)解析式;

求該公司銷售該原料日獲利(元)與銷售單價(元)之間的函數(shù)解析式;

求當銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為3的正方形ABCD中,點E、F分別在邊CD、AD上,且DE=AF=1,連接AE,BF交于點G,將△AED沿AE對折,得到△AEH,延長AHCD于點P.

(1)求證:①△AED≌△BFA;②AE⊥BF;

(2)求S四邊形DEGF

(3)求sin∠HPE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,平分.

1)如圖1,若,,求證:平分;

2)如圖2,若,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(1,a是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,B(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點D坐標并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運動,當線段PA與線段PB之差達到最大時求點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用直尺和圓規(guī)作一個角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=AOB的依據(jù)是( )

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù):① 3.141 π 0 0.3030030003……(相鄰兩個3之間0的個數(shù)逐次增加1

其中有理數(shù)是___________;無理數(shù)是___________(填序號)

查看答案和解析>>

同步練習冊答案