【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)若點(diǎn)E為x軸下方拋物線上的一動(dòng)點(diǎn),當(dāng)S△ABE=S△ABC時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使∠BAP=∠CAE?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x2+x﹣5;(2)E點(diǎn)坐標(biāo)為(﹣2,﹣5);(3)存在滿足條件的點(diǎn)P,其橫坐標(biāo)為或
.
【解析】
(1)把A、B兩點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法可求得拋物線的解析式;(2)當(dāng)S△ABE=S△ABC時(shí),可知E點(diǎn)和C點(diǎn)的縱坐標(biāo)相同,可求得E點(diǎn)坐標(biāo);(3)在△CAE中,過E作ED⊥AC于點(diǎn)D,可求得ED和AD的長度,設(shè)出點(diǎn)P坐標(biāo),過P作PQ⊥x軸于點(diǎn)Q,由條件可知△EDA∽△PQA,利用相似三角形的對應(yīng)邊可得到關(guān)于P點(diǎn)坐標(biāo)的方程,可求得P點(diǎn)坐標(biāo).
(1)把A、B兩點(diǎn)坐標(biāo)代入解析式可得,,解得 ,
∴拋物線解析式為y=x2+x﹣5;
(2)在y=x2+x﹣5中,令x=0可得y=﹣5,
∴C(0,﹣5),
∵S△ABE=S△ABC,且E點(diǎn)在x軸下方,
∴E點(diǎn)縱坐標(biāo)和C點(diǎn)縱坐標(biāo)相同,
當(dāng)y=﹣5時(shí),代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),
∴E點(diǎn)坐標(biāo)為(﹣2,﹣5);
(3)假設(shè)存在滿足條件的P點(diǎn),其坐標(biāo)為(m,m2+m﹣5),
如圖,連接AP、CE、AE,過E作ED⊥AC于點(diǎn)D,過P作PQ⊥x軸于點(diǎn)Q,
則AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,
在Rt△AOC中,OA=OC=5,則AC=,∠ACO=∠DCE=45°,
由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,
∴AD=AC﹣DC=﹣=4,
當(dāng)∠BAP=∠CAE時(shí),則△EDA∽△PQA,
∴,即=,
∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),
當(dāng)m2+m﹣5=(5+m)時(shí),整理可得4m2﹣5m﹣75=0,解得m=或m=﹣5(與A點(diǎn)重合,舍去),
當(dāng)m2+m﹣5=﹣(5+m)時(shí),整理可得4m2+11m﹣45=0,解得m=或m=﹣5(與A點(diǎn)重合,舍去),
∴存在滿足條件的點(diǎn)P,其橫坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊長為1,點(diǎn)、分別是、邊上的中點(diǎn),點(diǎn)是對角線上的一個(gè)動(dòng)點(diǎn),則的最小值是( )
A. B. 1C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點(diǎn)A(-3,4).
(1)求b的值;
(2)過點(diǎn)A作軸的平行線交拋物線于另一點(diǎn)B,在直線AB上任取一點(diǎn)P,作點(diǎn)A關(guān)于直線OP的對稱點(diǎn)C;
①當(dāng)點(diǎn)C恰巧落在軸時(shí),求直線OP的表達(dá)式;
②連結(jié)BC,求BC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3(a≠0),且a+b=3.
(1)若其圖象經(jīng)過點(diǎn)(﹣3,0),求此二次函數(shù)的表達(dá)式.
(2)若(m,n)為(1)中二次函數(shù)圖象在第三象限內(nèi)的點(diǎn),請分別求m,n的取值范圍.
(3)點(diǎn)P(x1,y1),Q(x2,y2)是函數(shù)圖象上兩個(gè)點(diǎn),滿足x1+x2=2且x1<x2,試比較y1和y2的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)D為OB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)如圖1,當(dāng)t=3時(shí),求DF的長.
(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)P在∠BCA平分線CD上,且PA=PB.
(1)用尺規(guī)作出符合要求的點(diǎn)P(保留作圖痕跡,不需要寫作法);
(2)判斷△ABP的形狀(不需要寫證明過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級學(xué)生的體育達(dá)標(biāo)情況,隨機(jī)抽取名九年級學(xué)生進(jìn)行體育達(dá)標(biāo)項(xiàng)目測試,測試成績?nèi)缦卤恚埜鶕?jù)表中的信息,解答下列問題:
測試成績(分) | |||||
人數(shù)(人) |
(1)該校九年級有名學(xué)生,估計(jì)體育測試成績?yōu)?/span>分的學(xué)生人數(shù);
(2)該校體育老師要對本次抽測成績?yōu)?/span>分的甲、乙、丙、丁名學(xué)生進(jìn)行分組強(qiáng)化訓(xùn)練,要求兩人一組,求甲和乙恰好分在同一組的概率.(用列表或樹狀圖方法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的直徑,和是的兩條切線,與相切于點(diǎn),分別交、于、兩點(diǎn)
(1)如圖1,求證:
(2)如圖2,連接并延長交于點(diǎn),連接.若,,求圖中陰影部分的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)、如圖a,求證:△BCP≌△DCQ;
(2)、如圖,延長BP交直線DQ于點(diǎn)E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com