【題目】市政府決定今年將長(zhǎng)的大堤的迎水坡面鋪石加固.如圖,堤高,堤面加寬,坡度由原來(lái)的改成,則完成這一工程需要的石方數(shù)為________

【答案】

【解析】

由題意可知,要求的石方數(shù)其實(shí)就是橫截面為ABCD的直棱柱的體積.那么求出四邊形ABCD的面積即可解決問(wèn)題

RtBFD,DBF的坡度為12,BF=2DF=8SBDF=BF×FD÷2=16

RtACE,A的坡度為12.5CEAE=12.5,CE=DF=4AE=10

S梯形AFDC=(AE+EF+CD×DF÷2=28,S四邊形ABCD=S梯形AFDCSBFD=12

那么所需的石方數(shù)應(yīng)該是12×12000=144000).

故答案為:144000

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,ABC是等邊三角形,點(diǎn)PBC上一動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)B、C不重合),過(guò)點(diǎn)PPMACABM,PNABACN,連接BN、CM

1)求證:PM+PNBC

2)在點(diǎn)P的位置變化過(guò)程中,BNCM是否成立?試證明你的結(jié)論;

3)如圖②,作NDBCABD,則圖②成軸對(duì)稱圖形,類似地,請(qǐng)你在圖③中添加一條或幾條線段,使圖③成軸對(duì)稱圖形(畫(huà)出一種情形即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 中,D BC 邊的中點(diǎn),E、F 分別在 AD 及其延長(zhǎng)線上,CEBF,連接BE、CF.

(1)求證:BDF ≌△CDE;

(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,中,,點(diǎn)在數(shù)軸-1處,點(diǎn)在數(shù)軸1處,,,則數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是

2)如圖2,點(diǎn)是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)垂直軸于點(diǎn),點(diǎn)軸上的動(dòng)點(diǎn),當(dāng)以,,為頂點(diǎn)的三角形為等腰直角三角形時(shí)點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老師所留的作業(yè)中有這樣一個(gè)分式的計(jì)算題:,甲、乙兩位同學(xué)完成的過(guò)程分別如下:

老師發(fā)現(xiàn)這兩位同學(xué)的解答都有錯(cuò)誤.

請(qǐng)你從甲、乙兩位同學(xué)中,選擇一位同學(xué)的解答過(guò)程,幫助他分析錯(cuò)因,并加以改正.

1)我選擇     同學(xué)的解答過(guò)程進(jìn)行分析.(填“甲”或“乙”)該同學(xué)的解答從第     步開(kāi)始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是    

2)請(qǐng)重新寫(xiě)出完成此題的正確解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)CD、B、F在一條直線上,且ABBDDEBD,ABCDCEAF

求證:(1)△ABF≌△CDE;

2CEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣2,8)和(﹣1,5),求這個(gè)二次函數(shù)的表達(dá)式;

(2)已知拋物線的頂點(diǎn)為(﹣1,﹣3),與y軸的交點(diǎn)為(0,﹣5),求這個(gè)拋物線相應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為

(1)求k的值;

(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;

(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,直線ABx軸交于點(diǎn)A,y軸交于點(diǎn)B,與直線OC:y=x交于點(diǎn)C.

(1)若直線AB解析式為.

①求點(diǎn)C的坐標(biāo);

②根據(jù)圖象,求關(guān)于x的不等式0<-x+10<x的解集;

(2)如下圖,作∠AOC的平分線ON,ABON,垂足為E,ΔOAC的面積為9,且OA=6,PQ分別為線段OA、OE上的動(dòng)點(diǎn),連接AQPQ,試探索AQ+PQ是否存在最小值?若存在,求出這個(gè)最小值:若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案