如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°.

(1)求證:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的邊長(zhǎng).

(1)證明見試題解析;(2)9.

解析試題分析:(1)由∠ADE=60°,可證得△ABD∽△DCE;可用等邊三角形的邊長(zhǎng)表示出DC的長(zhǎng),
(2)由(1)根據(jù)相似三角形的對(duì)應(yīng)邊成比例,求得△ABC的邊長(zhǎng).
試題解析:(1)∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=AB﹣3;∴∠BAD+∠ADB=120°,∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE;
(2)∵△ABD∽△DCE,∴,∴,解得AB=9.
考點(diǎn):1.相似三角形的判定與性質(zhì);2.等邊三角形的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

探究一:如圖1,已知正方形ABCD,E、F分別是BC、AB上的兩點(diǎn),且AE⊥DF.小明經(jīng)探究,發(fā)現(xiàn)AE=DF.請(qǐng)你幫他寫出證明過程.

探究二:如圖2,在矩形ABCD中,AB=3,BC=4,E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE⊥FH.小明發(fā)現(xiàn),GE與FH并不相等,請(qǐng)你幫他求出的值.

探究三:小明思考這樣一個(gè)問題:如圖3,在正方形ABCD中,若E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE=FH,試問:GE⊥FH是否成立?若一定成立,請(qǐng)給予證明;若不一定成立,請(qǐng)畫圖并作出說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,某同學(xué)想測(cè)量旗桿的高度,他在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)1.5米,在同一時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上的影長(zhǎng)為21米,留在墻上的影高為2米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,路燈(P點(diǎn))距地面8米,身高1.6米的小明從距路燈的底部(O點(diǎn) )20米的A點(diǎn),沿OA所在的直線行走14米到B點(diǎn)時(shí),身影的長(zhǎng)度是變長(zhǎng)了還是變短了?變長(zhǎng)或變短了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上).

(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為_________;
②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為_________;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

將矩形ABCD紙片沿對(duì)角線AC剪開,得到△ABC和△A′C′D,如圖1所示,將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示,觀察圖2可知:與BC相等的線段是______,∠CAC′=______°。

問題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q,試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.,

拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H,若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在△ABC中,AB="AC=" 5,BC= 8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.

(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一天晚上,黎明和張龍利用燈光下的影子長(zhǎng)來測(cè)量一路燈D的高度.如圖,當(dāng)李明走到點(diǎn)A處時(shí),張龍測(cè)得李明直立時(shí)身高AM與影子長(zhǎng)AE正好相等;接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處時(shí),李明直立時(shí)身高BN的影子恰好是線段AB,并測(cè)得AB=1.25m,已知李明直立時(shí)的身高為1.75m,求路燈的高CD的長(zhǎng).(結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點(diǎn)D地邊AC上,點(diǎn)E、F在邊AB上,點(diǎn)G在邊BC上。

(1)求證:△ADE≌△BGF;
(2)若正方形DEFG的面積為16cm,求AC的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案