精英家教網 > 初中數學 > 題目詳情

如圖,路燈(P點)距地面8米,身高1.6米的小明從距路燈的底部(O點 )20米的A點,沿OA所在的直線行走14米到B點時,身影的長度是變長了還是變短了?變長或變短了多少米?

變短3.5米.

解析試題分析:如圖,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性質求解.
試題解析:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影變短了5﹣1.5=3.5米.

考點:相似三角形的應用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,小麗在觀察某建筑物

(1)請你根據小亮在陽光下的投影,畫出建筑物在陽光下的投影.
(2)已知小麗的身高為,在同一時刻測得小麗和建筑物的投影長分別為,求建筑物的高.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,Rt△ABC中,CD是斜邊AB上的高.求證:AC2=AD·AB

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在正方形網格上有△ABC和△DEF.

(1)求證:△ABC∽△DEF;
(2)計算這兩個三角形的周長比;
(3)根據上面的計算結果,你有何猜想?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上,這個正方形零件的邊長是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AD=2,BC=4,點M是AD的中點,△MBC是等邊三角形.

(1)求證:梯形ABCD是等腰梯形;
(2)動點P、Q分別在線段BC和MC上運動,且∠MPQ=60°保持不變.設PC=x,MQ=y,求y與x的函數關系式;
(3)在(2)中:
①當動點P、Q運動到何處時,以點P、M和點A、B、C、D中的兩個點為頂點的四邊形是平行四邊形?并指出符合條件的平行四邊形的個數;
②當y取最小值時,判斷△PQC的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°.

(1)求證:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點,以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側.

(1)當正方形的頂點F恰好落在對角線AC上時,求BE的長;
(2)將(1)問中的正方形BEFG沿BC向右平移,記平移中的正方形BEFG為正方形B′EFG,當點E與點C重合時停止平移.設平移的距離為t,正方形B′EFG的邊EF與AC交于點M,連接B′D,B′M,DM.是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)在(2)問的平移過程中,設正方形B′EFG與△ADC重疊部分的面積為S,請直接寫出S與t之間的函數關系式以及自變量t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.

(1)如圖①,當時,求的值;
(2)如圖②當DE平分∠CDB時,求證:AF=OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.

查看答案和解析>>

同步練習冊答案