如圖,小麗在觀察某建筑物

(1)請你根據(jù)小亮在陽光下的投影,畫出建筑物在陽光下的投影.
(2)已知小麗的身高為,在同一時刻測得小麗和建筑物的投影長分別為,求建筑物的高.

(1)圖形見解析;(2)建筑物AB的高為11m.

解析試題分析:因?yàn)樵谕粫r刻物高與影長成正比例,所以解題的關(guān)鍵是將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.
試題解析:(1)如圖:

(2)如圖,因?yàn)镈E,AB都垂直于地面,且光線DF∥AC,
所以Rt△DEF∽Rt△ABC,
所以,
,所以AB=11(m).
即建筑物AB的高為11m.
考點(diǎn):相似三角形的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,BC是半⊙O的直徑,點(diǎn)P是半圓弧的中點(diǎn),點(diǎn)A是弧BP的中點(diǎn),AD⊥BC于D,連結(jié)AB、PB、AC,BP分別與AD、AC相交于點(diǎn)E、F.
(1)BE與EF相等嗎?并說明理由;
(2)小李通過操作發(fā)現(xiàn)CF=2AB,請問小李的發(fā)現(xiàn)是否正確,若正確,請說明理由;若不正確,請寫出CF與AB正確的關(guān)系式.
(3)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動,速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動,速度為2cm/s;連結(jié)PQ。若設(shè)運(yùn)動時間為t(s)(0<t<2),解答下列問題:

(1)當(dāng)t為何值時?PQ//BC?
(2)設(shè)△APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?
(3)是否存在某一時刻t,使線段PQ恰好把△ABC的周長和面積同時平分?若存在求出此時t的值;若不存在,說明理由。
(4)如圖2,連結(jié)PC,并把△PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時刻t,使四邊形PQP'C為菱形?若存在求出此時t的值;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在□ABCD中,E是AB的中點(diǎn),ED和AC相交于點(diǎn)F,過點(diǎn)F作FG∥AB,交AD于點(diǎn)G.

(1)求證:AB=3FG;
(2)若AB:AC=:,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A?B?C?D勻速運(yùn)動,同時動點(diǎn)Q以相同速度在x軸正半軸上運(yùn)動,當(dāng)P點(diǎn)到達(dá)D點(diǎn)時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動的時間為t秒.

(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動時,點(diǎn)Q的橫坐標(biāo)x(長度單位)關(guān)于運(yùn)動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點(diǎn)Q開始運(yùn)動時的坐標(biāo)及點(diǎn)P運(yùn)動速度;
(2)求正方形邊長及頂點(diǎn)C的坐標(biāo);
(3)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

理解與應(yīng)用
小明在學(xué)習(xí)相似三角形時,在北京市義務(wù)教育課程改革實(shí)驗(yàn)教材第17冊書,第37頁遇到這樣一道題:

如圖1,在△ABC中,P是邊AB上的一點(diǎn),聯(lián)結(jié)CP.
要使△ACP∽△ABC,還需要補(bǔ)充的一個條件是____________,或_________.
請回答:
(1)小明補(bǔ)充的條件是____________________,或_________________.
(2)請你參考上面的圖形和結(jié)論,探究、解答下面的問題:
如圖2,在△ABC中,∠A=60°,AC2= AB2+AB.BC.求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探究一:如圖1,已知正方形ABCD,E、F分別是BC、AB上的兩點(diǎn),且AE⊥DF.小明經(jīng)探究,發(fā)現(xiàn)AE=DF.請你幫他寫出證明過程.

探究二:如圖2,在矩形ABCD中,AB=3,BC=4,E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE⊥FH.小明發(fā)現(xiàn),GE與FH并不相等,請你幫他求出的值.

探究三:小明思考這樣一個問題:如圖3,在正方形ABCD中,若E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE=FH,試問:GE⊥FH是否成立?若一定成立,請給予證明;若不一定成立,請畫圖并作出說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

以平面上一點(diǎn)O為直角頂點(diǎn),分別畫出兩個直角三角形,記作△AOB和△COD,其中∠ABO=∠DCO=30°.
(1)點(diǎn)E、F、M分別是AC、CD、DB的中點(diǎn),連接EF和FM.
①如圖1,當(dāng)點(diǎn)D、C分別在AO、BO的延長線上時,=_______;

②如圖2,將圖1中的△AOB繞點(diǎn)O沿順時針方向旋轉(zhuǎn)角(),其他條件不變,判斷的值是否發(fā)生變化,并對你的結(jié)論進(jìn)行證明;

(2)如圖3,若BO=,點(diǎn)N在線段OD上,且NO=3.點(diǎn)P是線段AB上的一個動點(diǎn),在將△AOB繞點(diǎn)O旋轉(zhuǎn)的過程中,線段PN長度的最小值為_______,最大值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,路燈(P點(diǎn))距地面8米,身高1.6米的小明從距路燈的底部(O點(diǎn) )20米的A點(diǎn),沿OA所在的直線行走14米到B點(diǎn)時,身影的長度是變長了還是變短了?變長或變短了多少米?

查看答案和解析>>

同步練習(xí)冊答案