如圖,在正方形網(wǎng)格上有△ABC和△DEF.

(1)求證:△ABC∽△DEF;
(2)計(jì)算這兩個(gè)三角形的周長(zhǎng)比;
(3)根據(jù)上面的計(jì)算結(jié)果,你有何猜想?

(1)證明見(jiàn)解析;(2)1:2;(3)周長(zhǎng)比等于相似比.

解析試題分析:(1)根據(jù)網(wǎng)格得出兩三角形的各邊長(zhǎng)度,進(jìn)而根據(jù)各邊的比值得出對(duì)應(yīng)邊的關(guān)系;
(2)利用網(wǎng)格求出兩三角形周長(zhǎng)即可;
(3)根據(jù)(2)中計(jì)算,即可猜想周長(zhǎng)與相似比的關(guān)系.
試題解析:∵AC=,AB=2,BC=,DF=2,DE=4,EF=2,

∴△ABC∽△DEF;
(2)∵, AB=2   BC= 
∴△ABC的周長(zhǎng)是2++
∵DE=4  DF=2,
∴△DEF的周長(zhǎng)是2(2++)
∴這兩個(gè)三角形的周長(zhǎng)比為:1:2;
(3)根據(jù)上面的計(jì)算結(jié)果可得出:周長(zhǎng)比等于相似比.
考點(diǎn): 相似三角形的判定與性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在□ABCD中,E是AB的中點(diǎn),ED和AC相交于點(diǎn)F,過(guò)點(diǎn)F作FG∥AB,交AD于點(diǎn)G.

(1)求證:AB=3FG;
(2)若AB:AC=:,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

以平面上一點(diǎn)O為直角頂點(diǎn),分別畫(huà)出兩個(gè)直角三角形,記作△AOB和△COD,其中∠ABO=∠DCO=30°.
(1)點(diǎn)E、F、M分別是AC、CD、DB的中點(diǎn),連接EF和FM.
①如圖1,當(dāng)點(diǎn)D、C分別在AO、BO的延長(zhǎng)線(xiàn)上時(shí),=_______;

②如圖2,將圖1中的△AOB繞點(diǎn)O沿順時(shí)針?lè)较蛐D(zhuǎn)角(),其他條件不變,判斷的值是否發(fā)生變化,并對(duì)你的結(jié)論進(jìn)行證明;

(2)如圖3,若BO=,點(diǎn)N在線(xiàn)段OD上,且NO=3.點(diǎn)P是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn),在將△AOB繞點(diǎn)O旋轉(zhuǎn)的過(guò)程中,線(xiàn)段PN長(zhǎng)度的最小值為_(kāi)______,最大值為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

觀(guān)察計(jì)算:
當(dāng)時(shí),的大小關(guān)系是_________________.
當(dāng),時(shí),的大小關(guān)系是_________________.
探究證明:
如圖所示,為圓O的內(nèi)接三角形,為直徑,過(guò)C作于D,設(shè),BD=b.

(1)分別用表示線(xiàn)段OC,CD­;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
歸納結(jié)論:
根據(jù)上面的觀(guān)察計(jì)算、探究證明,你能得出的大小關(guān)系是:______________.
實(shí)踐應(yīng)用:
要制作面積為4平方米的長(zhǎng)方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某同學(xué)想測(cè)量旗桿的高度,他在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)1.5米,在同一時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上的影長(zhǎng)為21米,留在墻上的影高為2米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角頂點(diǎn)P在AD上滑動(dòng)時(shí)(點(diǎn)P與A、D不重合),一直角邊始終經(jīng)過(guò)點(diǎn)C,另一直角邊與AB交于點(diǎn)E.

(1)證明△DPC∽△AEP;
(2)當(dāng)∠CPD=30°時(shí),求AE的長(zhǎng);
(3)是否存在這樣的點(diǎn)P,使△DPC的周長(zhǎng)等于△AEP周長(zhǎng)的倍?若存在,求出DP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,路燈(P點(diǎn))距地面8米,身高1.6米的小明從距路燈的底部(O點(diǎn) )20米的A點(diǎn),沿OA所在的直線(xiàn)行走14米到B點(diǎn)時(shí),身影的長(zhǎng)度是變長(zhǎng)了還是變短了?變長(zhǎng)或變短了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

將矩形ABCD紙片沿對(duì)角線(xiàn)AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示,將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線(xiàn)上,如圖2所示,觀(guān)察圖2可知:與BC相等的線(xiàn)段是______,∠CAC′=______°。

問(wèn)題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線(xiàn)GA的垂線(xiàn),垂足分別為P、Q,試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.,

拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線(xiàn)GA交EF于點(diǎn)H,若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,如圖,ABCD中,AD=3cm,CD=1cm,∠B=45°,點(diǎn)P從點(diǎn)A出發(fā),沿AD方向勻速運(yùn)動(dòng),速度為3cm/s;點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動(dòng),速度為1cm/s,連接并延長(zhǎng)QP交BA的延長(zhǎng)線(xiàn)于點(diǎn)M,過(guò)M作MN⊥BC,垂足是N,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<1),解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),四邊形AQDM是平行四邊形?
(2)設(shè)四邊形ANPM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使四邊形ANPM的面積是ABCD面積的一半,若存在,求出相應(yīng)的t值,若不存在,說(shuō)明理由
(4)連接AC,是否存在某一時(shí)刻t,使NP與AC的交點(diǎn)把線(xiàn)段AC分成的兩部分?若存在,求出相應(yīng)的t值,若不存在,說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案