精英家教網 > 初中數學 > 題目詳情

一天晚上,黎明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立時身高AM與影子長AE正好相等;接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m).

6.1m

解析試題分析:根據AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對應邊的比相等列出比例式求解即可.
試題解析:設CD長為x米,
∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA
∴MA∥CD,BN∥CD
∴EC=CD=x
∴△ABN∽△ACD                     (5分)
    即
解得:x=6.125≈6.1
∴路燈高CD約為6.1m              (10分)
考點:相似三角形的應用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

已知:如圖,Rt△ABC中,CD是斜邊AB上的高.求證:AC2=AD·AB

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°.

(1)求證:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點,以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側.

(1)當正方形的頂點F恰好落在對角線AC上時,求BE的長;
(2)將(1)問中的正方形BEFG沿BC向右平移,記平移中的正方形BEFG為正方形B′EFG,當點E與點C重合時停止平移.設平移的距離為t,正方形B′EFG的邊EF與AC交于點M,連接B′D,B′M,DM.是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)在(2)問的平移過程中,設正方形B′EFG與△ADC重疊部分的面積為S,請直接寫出S與t之間的函數關系式以及自變量t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

【探究發(fā)現】
按圖中方式將大小不同的兩個正方形放在一起,分別求出陰影部分(⊿ACF)的面積。(單位:厘米,陰影部分的面積依次用S1、S2、S3表示)
1.S1=          cm2;     S2=          cm2;          S3=          cm2.
2.歸納總結你的發(fā)現:

【推理反思】
按圖中方式將大小不同的兩個正方形放在一起,設小正方形的邊長是bcm,大正方形的邊長是acm,求:陰影部分(⊿ACF)的面積。

【應用拓展】
1.按上圖方式將大小不同的兩個正方形放在一起,若大正方形的面積是80cm2,則圖中陰影三角形的面積是          cm2.
2.如圖(1),C是線段AB上任意一點,分別以AC、BC為邊在線段AB同側構造等邊三角形⊿ACD和等邊三角形⊿CBE,若⊿CBE的邊長是1cm,則圖中陰影三角形的面積是                        cm2.
3.如圖(2),菱形ABCD和菱形ECGF的邊長分別為2和3,∠A=120°,則圖中陰影部分的面積是   

(1)                      (2)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.

(1)當點P在線段AB上時,求證:△APQ∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

一天晚上,李明和張龍利用燈光下的影子來測量一路燈D的高度,如圖,當李明走到點A處時,張龍測得李明直立身高AM與其影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m。已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.

(1)如圖①,當時,求的值;
(2)如圖②當DE平分∠CDB時,求證:AF=OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

如圖,桌面上有一個一次性紙杯,它的正視圖應是( 。

A.B.C.D.

查看答案和解析>>

同步練習冊答案