精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.

(1)操作發(fā)現
如圖2,固定△ABC,使△DEC繞點C旋轉,當點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關系是;
②設△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數量關系是.

(2)猜想論證
當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S2的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.

(3)拓展探究
已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//AB交BC于點E(如圖4).若在射線BA上存在點F,使 ,請直接寫出相應的BF的長.

【答案】
(1)DE∥AC,S1=S2
(2)解:如圖,∵△DEC是由△ABC繞點C旋轉得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,

,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S2


(3)解:如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時SDCF1=SBDE;

過點D作DF2⊥BD,

∵∠ABC=60°,F1D∥BE,

∴∠F2F1D=∠ABC=60°,

∵BF1=DF1,∠F1BD= ∠ABC=30°,∠F2DB=90°,

∴∠F1DF2=∠ABC=60°,

∴△DF1F2是等邊三角形,

∴DF1=DF2,

∵BD=CD,∠ABC=60°,點D是角平分線上一點,

∴∠DBC=∠DCB= ×60°=30°,

∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,

∠CDF2=360°﹣150°﹣60°=150°,

∴∠CDF1=∠CDF2,

∵在△CDF1和△CDF2中,

∴△CDF1≌△CDF2(SAS),

∴點F2也是所求的點,

∵∠ABC=60°,點D是角平分線上一點,DE∥AB,

∴∠DBC=∠BDE=∠ABD= ×60°=30°,

又∵BD=4,

∴BE= ×4÷cos30°=2÷ =

∴BF1= ,BF2=BF1+F1F2= + = ,

故BF的長為


【解析】解:(1)①∵△DEC繞點C旋轉點D恰好落在AB邊上,

∴AC=CD,

∵∠BAC=90°﹣∠B=90°﹣30°=60°,

∴△ACD是等邊三角形,

∴∠ACD=60°,

又∵∠CDE=∠BAC=60°,

∴∠ACD=∠CDE,

∴DE∥AC;

②∵∠B=30°,∠C=90°,

∴CD=AC= AB,

∴BD=AD=AC,

根據等邊三角形的性質,△ACD的邊AC、AD上的高相等,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S2;

故答案為:DE∥AC;S1=S2;

(1)①根據旋轉的性質可得AC=CD,然后求出△ACD是等邊三角形,根據等邊三角形的性質可得∠ACD=60°,然后根據內錯角相等,兩直線平行解答.
②根據等邊三角形的性質可得AC=AD,再根據直角三角形30°角所對的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據等邊三角形的性質求出點C到AB的距離等于點D到AC的距離,然后根據等底等高的三角形的面積相等解答。
(2)根據旋轉的性質可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據全等三角形對應邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明.
(3)過點D作DF1∥BE,求出四邊形BEDF1是菱形,根據菱形的對邊相等可得BE=DF1,然后根據等底等高的三角形的面積相等可知點F1為所求的點,過點D作DF2⊥BD,求出∠F1DF2=60°,從而得到△DF1F2是等邊三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“邊角邊”證明△CDF1和△CDF2全等,根據全等三角形的面積相等可得點F2也是所求的點,然后在等腰△BDE中求出BE的長,可得到BF1的長再根據BF2=BF1+F1F2即可得解。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】真假命題的思考.

一天,老師在黑板上寫下了下列三個命題:

①垂直于同一條直線的兩條直線平行;

②若,則

③若的兩邊所在直線分別平行,則.

小明和小麗對話如下,

小明:“命題①是真命題,好像可以證明.”

小麗:“命題①是假命題,好像少了一些條件.”

1)結合小明和小麗的對話,談談你的觀點.如果你認為是真命題,請證明:如果你認為是假命題,請增加一個適當的條件,使之成真命題.

2)請在命題②、命題③中選一個,如果你認為它是真命題,請證明:如果你認為它是假命題,請舉出反例.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩直線l1ykx2b+1l2y=(1kx+b1交于x軸上一點A,與y軸分別交于點B、C,若A的橫坐標為2.

1)求這兩條直線的解析式;

2)求ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠A=F,∠C=D,試說明BDCE

解:∵∠A=F(已知)

ACDF( )

∴∠D= ( )

又∵∠C=D(已知)

∴∠1=C(等量代換)

BDCE( )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在四邊形中,的角平分線交于點,,過點于點,,,連接,,則__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,過ABCD的對角線BD上一點M分別作平行四邊形兩邊的平行線EF與GH,那么圖中的AEMG的面積S1HCFM的面積S2的大小關系是( )

A. S1>S2 B. S1<S2 C. S1=S2 D. 2S1=S2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.

(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,C是線段AB上一點,M是線段AC的中點,N是線段BC的中點.

(1)如果AB=20 cm,AM=6 cm,求NC的長;

(2)如果MN=6 cm,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊的異側作,并使.點在射線上.

(1)如圖,若,求證:;

(2),試解決下面兩個問題:

①如圖2,,求的度數;

②如圖3,若,過點交射線于點,當時,求的度數.

查看答案和解析>>

同步練習冊答案