精英家教網 > 初中數學 > 題目詳情
已知:如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=4
3
,以AC為直徑的⊙O交AB于點D,點E是BC的中點,連接OD,OB,DE.
(1)求證:OD⊥DE;
(2)求sin∠ABO的值.
(1)證明:連接CD,∵AC是直徑,∴∠ADC=∠BDC=90°,(2分)
∵E是BC的中點,
∴DE=BE=EC.(3分)
∵OA=OD,DE=BE,
∴∠ADO=∠A,∠DBE=∠BDE.(4分)
∵∠DBE+∠A=90°,
∴∠BDE+∠ADO=90°,(5分)
∴∠EDO=90°,
∴OD⊥DE.(6分)

(2)過O作OF⊥AD;(7分)
∵在Rt△ABC中,tanA=
BC
AC
=
3

∴∠A=60°,∴△AOD是邊長為2的等邊三角形,
∴OF=
3
.(8分)
在Rt△BOC中,BO=
4+48
=2
13
,(9分)
∴sin∠ABO=
OF
OB
=
3
2
13
=
39
26
.(10分)
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦AC與AB成30°的角,CD與⊙O相切于C,交AB的延長線于D.求證:AC=CD.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,CO⊥AB于點O,CD是⊙O的切線,切點為D.連接BD,交OC于點E.
(1)求證:∠CDE=∠CED;
(2)若AB=13,BD=12,求DE的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,⊙O的半徑為2cm,過點O向直線l引垂線,垂足為A,OA的長為3cm,將直線l沿OA方向移動,使直線l與⊙O相切,那么平移的距離為( 。
A.1cmB.3cmC.5cmD.1cm或5cm

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,PA為⊙O的切線,A為切點,PBC為割線,∠APC的平分線PF交AC于點F,交AB于點E.
(1)求證:AE=AF;
(2)若PB:PA=1:2,M是
BC
上的點,AM交BC于D,且PD=DC,試確定M點在BC上的位置,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=90°,邊AC的垂直平分線交BC于點D,交AC于點E,連接BE.
(1)若∠C=30°,求證:BE是△DEC外接圓的切線;
(2)若BE=
3
,BD=1,求△DEC外接圓的直徑.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,P為AB延長線上的一個動點,過點P作⊙O的切線,設切點為C.
(1)當點P在AB延長線上的位置如圖(1)所示時,連接AC,作∠APC的平分線,交AC于點D,請你測量出∠CDP的度數;
(2)當點P的位置發(fā)生改變時(如圖(2)),由以上的過程形成的角∠CDP的度數是否發(fā)生變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,AD是⊙O的切線,D為切點,過點A引⊙O的割線ABC,依次交⊙O于點B和點C,若AC=4,AD=2,則AB等于( 。
A.
1
2
B.1C.
2
D.2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖:PA是⊙O的切線,A為切點,PBC是過圓心的割線,PA=10,PB=5,則tan∠PAB的值為______.

查看答案和解析>>

同步練習冊答案