精英家教網 > 初中數學 > 題目詳情
如圖,AB為⊙O的直徑,P為AB延長線上的一個動點,過點P作⊙O的切線,設切點為C.
(1)當點P在AB延長線上的位置如圖(1)所示時,連接AC,作∠APC的平分線,交AC于點D,請你測量出∠CDP的度數;
(2)當點P的位置發(fā)生改變時(如圖(2)),由以上的過程形成的角∠CDP的度數是否發(fā)生變化?請對你的猜想加以證明.
(1)測量出∠CDP的度數為45°;

(2)∠CDP的度數不發(fā)生變化.理由如下:
連結OC,如圖,
∵PC為⊙O的切線,
∴OC⊥PC,
∴∠OCP=90°,
∵PD平分∠APC,
∴∠1=∠2,
∴∠CDP=∠A+∠2=∠A+∠1,
∵OA=OC,
∴∠A=∠ACD,
∴∠CDP=∠ACO+∠1,
而∠CDP+∠ACO+∠1=180°-∠OCP=90°,
∴∠CDP=45°.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于D,OEAB交BC于E,連DE.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,DE=4,求AD之長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,四邊形AFCD是菱形,以AB為直徑的圓O經過點D,E是⊙O上一點,且∠AED=45°.
(1)判斷CD與⊙O的位置關系,并說明理由;
(2)若⊙O的直徑為10cm,求AE的長.(sin67.5°=0.92,tan67.5°=2.41,精確到0.1)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=4
3
,以AC為直徑的⊙O交AB于點D,點E是BC的中點,連接OD,OB,DE.
(1)求證:OD⊥DE;
(2)求sin∠ABO的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,PA是⊙O的切線,切點為A,∠APO=36°,則∠AOP的度數為______度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O交AC于點D,且AD=DC,CO的延長線交⊙O于點E,過點E作弦EF⊥AB,垂足為點G.
(1)求證:BC是⊙O的切線;
(2)若AB=2,求EF的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知Rt△ABC中,∠A=30゜,∠C=90゜,D為射線AB上一動點,經過點C的⊙O與直線AB相切于點D,交射線AC于點E.
(1)如圖1,點D在邊AC上,若AB=12,求⊙O的半徑;
(2)如圖2,CD平分∠ACB,⊙O的半徑為1,求AC的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB為⊙O的弦,C為劣弧AB的中點.
(1)若⊙O的半徑為5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且點D在⊙O的外部,判斷AD與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M.
(Ⅰ)求證:MO=
1
2
BC;
(Ⅱ)求證:PC是⊙O的切線.

查看答案和解析>>

同步練習冊答案