【題目】西安市某學(xué)校的數(shù)學(xué)探究小組利用無(wú)人機(jī)在操場(chǎng)上開(kāi)展測(cè)量教學(xué)樓高度的活動(dòng),如圖,此時(shí)無(wú)人機(jī)在離地面30米的點(diǎn)處,操控者站在點(diǎn)處,無(wú)人機(jī)測(cè)得點(diǎn)的俯角為,測(cè)得教學(xué)樓樓頂點(diǎn)處的俯角為.又經(jīng)過(guò)人工測(cè)量得到操控者和教學(xué)樓的距離為57米,求教學(xué)樓的高度.(注:點(diǎn)都在同一平面上,無(wú)人機(jī)大小忽略不計(jì).參考數(shù)據(jù):)
【答案】教學(xué)樓的高約為13米.
【解析】
如圖(見(jiàn)解析),過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),先在中,利用正切函數(shù)值求出AE的長(zhǎng),從而可得BE的長(zhǎng),再根據(jù)矩形的判定與性質(zhì)可得CF的長(zhǎng),然后在中可求出DF的長(zhǎng),最后根據(jù)線段的和差即可得.
如圖,過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),則四邊形BCFE是矩形
由題意得:
在中,
,即
四邊形是矩形
在中,
答:教學(xué)樓的高約為13米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:等腰三角形具有性質(zhì)“等邊對(duì)等角”.事實(shí)上,不等邊三角形也具有類似性質(zhì)“大邊對(duì)大角”:如圖1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.證明如下:將AB沿△ABC的角平分線AD翻折(如圖2),因?yàn)?/span>AB>AC,所以點(diǎn)B落在AC的延長(zhǎng)線上的點(diǎn)B'處.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.
(1)靈活運(yùn)用:從上面的證法可以看出,折紙常常能為證明一個(gè)命題提供思路和方法.由此小明想到可用類似方法證明“大角對(duì)大邊”:如圖3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分線翻折……請(qǐng)你幫助小明完成后面的證明過(guò)程.
(2)拓展延伸:請(qǐng)運(yùn)用上述方法或結(jié)論解決如下問(wèn)題:
如圖4,已知M為正方形ABCD的邊CD上一點(diǎn)(不含端點(diǎn)),連接AM并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)N.求證:AM+AN>2BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點(diǎn),過(guò) A 作 y 軸的垂線,交函數(shù)的圖象于點(diǎn) C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】記某商品銷售單價(jià)為x元,商家銷售此種商品每月獲得的銷售利潤(rùn)為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷售單價(jià)分別定為55元或75元時(shí),他每月均可獲得銷售利潤(rùn)1800元;當(dāng)商家將此種商品銷售單價(jià)定為80元時(shí),他每月可獲得銷售利潤(rùn)1550元,則y與x的函數(shù)關(guān)系式是( )
A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850
C.y=﹣(x﹣65)2+1900D.y=﹣2(x﹣65)2+2000
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸,交于A、B兩點(diǎn),點(diǎn)C是BO的中點(diǎn)且
(1)求直線AC的解析式;
(2)若點(diǎn)M是直線AC的一點(diǎn),當(dāng)時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①表示一個(gè)時(shí)鐘的鐘面垂直固定于水平桌面上,其中分針上有一點(diǎn)A,當(dāng)鐘面顯示3點(diǎn)30分時(shí),分針垂直于桌面,A點(diǎn)距桌面的高度為10cm.圖②表示當(dāng)鐘面顯示3點(diǎn)45分時(shí),A點(diǎn)距桌面的高度為16cm,若鐘面顯示3點(diǎn)55分時(shí),A點(diǎn)距桌面的高度為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,,點(diǎn)D在邊AB上,且,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),以PD為邊向上做正方形,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為秒,正方形與重疊部分的面積為.
(1)用含有的代數(shù)式表示線段的長(zhǎng).
(2)當(dāng)點(diǎn)落在的邊上時(shí),求的值.
(3)求與的函數(shù)關(guān)系式.
(4)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),做點(diǎn)N關(guān)于CD的對(duì)稱點(diǎn),當(dāng)與的某一個(gè)頂點(diǎn)的連線平分的面積時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy,對(duì)于點(diǎn)P(xp,yp)和圖形G,設(shè)Q(xQ,yQ)是圖形G上任意一點(diǎn),|xp﹣xQ|的最小值叫點(diǎn)P和圖形G的“水平距離”,|yp﹣yQ|的最小值叫點(diǎn)P和圖形G的“豎直距離”,點(diǎn)P和圖形G的“水平距離”與“豎直距離”的最大值叫做點(diǎn)P和圖形G的“絕對(duì)距離”
例如:點(diǎn)P(﹣2,3)和半徑為1的⊙O,因?yàn)?/span>⊙O上任一點(diǎn)Q(xQ,yQ)滿足﹣1≤xQ≤1,﹣1≤yQ≤1,點(diǎn)P和⊙O的“水平距離”為|﹣2﹣xQ|的最小值,即|﹣2﹣(﹣1)|=1,點(diǎn)P和⊙O的“豎直距離”為|3﹣yQ|的最小值即|3﹣1|=2,因?yàn)?/span>2>1,所以點(diǎn)P和⊙O的“絕對(duì)距離”為2.
已知⊙O半徑為1,A(2,),B(4,1),C(4,3)
(1)①直接寫(xiě)出點(diǎn)A和⊙O的“絕對(duì)距離”
②已知D是△ABC邊上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)D與⊙O的“絕對(duì)距離”為2時(shí),寫(xiě)出一個(gè)滿足條件的點(diǎn)D的坐標(biāo);
(2)已知E是△ABC邊一個(gè)動(dòng)點(diǎn),直接寫(xiě)出點(diǎn)E與⊙O的“絕對(duì)距離”的最小值及相應(yīng)的點(diǎn)E的坐標(biāo)
(3)已知P是⊙O上一個(gè)動(dòng)點(diǎn),△ABC沿直線AB平移過(guò)程中,直接寫(xiě)出點(diǎn)P與△ABC的“絕對(duì)距離”的最小值及相應(yīng)的點(diǎn)P和點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列賦予實(shí)際意義的敘述中不正確的是( )
A. 若葡萄的價(jià)格是4元/千克,則表示買(mǎi)千克葡萄的金額
B. 若表示一個(gè)正方形的邊長(zhǎng),則表示這個(gè)正方形的周長(zhǎng)
C. 將一個(gè)小木塊放在水平桌面上,若4表示小木塊與桌面的接觸面積,表示桌面受到的壓強(qiáng),則表示小木塊對(duì)桌面的壓力
D. 若4和分別表示一個(gè)兩位數(shù)中的十位數(shù)字和個(gè)位數(shù)字,則表示這個(gè)兩位數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com