【題目】閱讀下列材料:
如圖1.在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,可以得到:
證明:過點A作AD⊥BC,垂足為D.
在Rt△ABD中,
∴
∴
同理:
∴
(1)通過上述材料證明:
(2)運用(1)中的結(jié)論解決問題:
如圖2,在中,,求AC的長度.
(3)如圖3,為了開發(fā)公路旁的城市荒地,測量人員選擇A、B、C三個測量點,在B點測得A在北偏東75°方向上,沿筆直公路向正東方向行駛18km到達(dá)C點,測得A在北偏西45°方向上,根據(jù)以上信息,求A、B、C三點圍成的三角形的面積.
(本題參考數(shù)值:sin15°≈0.3,sin120°≈0.9,≈1.4,結(jié)果取整數(shù))
【答案】(1)證明見解析 (2)12 (3)38
【解析】
(1)根據(jù)材料中的S△ABCabsinCacsinBbcsinA,化為比例式可得結(jié)論;
(2)根據(jù)公式,直接代入可得結(jié)論;
(3)先根據(jù)公式計算AC的長,由S△ABCAC×BC×sin∠ACB可得結(jié)論.
(1)∵absinCacsinB,∴bsinC=csinB,∴,:同理得:,∴;
(2)由題意得:∠B=15°,∠C=60°,AB=20,∴,即,∴,∴AC=40×0.3=12;
(3)由題意得:∠ABC=90°﹣75°=15°,∠ACB=90°﹣45°=45°,∠A=180°﹣15°﹣45°=120°,由得:,∴AC=6,∴S△ABCAC×BC×sin∠ACB6×18×0.7≈38.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點 A(,4)和點B(8,),與坐標(biāo)軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)觀察圖象,當(dāng)時,直接寫出的解集;
(3)若點P是軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列6個結(jié)論:
①abc<0;
②b<a﹣c;
③4a+2b+c>0;
④2c<3b;
⑤a+b<m(am+b),(m≠1的實數(shù))
⑥2a+b+c>0,其中正確的結(jié)論的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長AD為⊙O 的直徑,E是AB上一點,將正方形的一個角沿EC折疊,使得點B恰好與圓上的點F重合,則 tan∠AEF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝廠批發(fā)某種服裝,每件成本為65元,規(guī)定不低于10件可以批發(fā),其批發(fā)價y(元/件)與批發(fā)數(shù)量x(件)(x為正整數(shù))之間所滿足的函數(shù)關(guān)系如圖所示.
(1)求y與x之間所滿足的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)設(shè)服裝廠所獲利潤為w(元),若10≤x≤50(x為正整數(shù)),求批發(fā)該種服裝多少件時,服裝廠獲得利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:
①b2>4ac;②ac>0; ③當(dāng)x>1時,y隨x的增大而減。 ④3a+c>0;⑤任意實數(shù)m,a+b≥am2+bm.
其中結(jié)論正確的序號是( 。
A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點,動點P(x,0)在x正半軸上運動,當(dāng)線段AP與線段BP之差達(dá)到最大時,點P的坐標(biāo)是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.
(1)當(dāng)y1﹣y2=4時,求m的值;
(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(biāo)(不需要寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若點C是弧AB的中點,已知AB=4,求CECP的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com