【題目】直線分別與x軸、y軸相交與點(diǎn)M、N,邊長為2的正方形OABC一個頂點(diǎn)O在坐標(biāo)系的原點(diǎn),直線AN與MC相交與點(diǎn)P,若正方形繞著點(diǎn)O旋轉(zhuǎn)一周,則點(diǎn)P到點(diǎn)(0,2)長度的最小值是( )
A.B.C.D.1
【答案】A
【解析】
試題解析:在△MOC和△NOA中,
,
∴△MOC≌△NOA,
∴∠CMO=∠ANO,
∵∠CMO+∠MCO=90°,∠MCO=∠NCP,
∴∠NCP+∠CNP=90°,
∴∠MPN=90°
∴MP⊥NP,
在正方形旋轉(zhuǎn)的過程中,同理可證,∴∠CMO=∠ANO,可得∠MPN=90°,MP⊥NP,
∴P在以MN為直徑的圓上,
∵M(-4,0),N(0,4),
∴圓心G為(-2,2),半徑為2,
∵PG-GC≤PC,
∴當(dāng)圓心G,點(diǎn)P,C(0,2)三點(diǎn)共線時,PC最小,
∵GN=GM,CN=CO=2,
∴GC= OM=2,
這個最小值為GP-GC=2-2.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和正方形AEFG有一個公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上,若將正方形AEFG繞點(diǎn)A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長與線段DG的長度始終相等?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,的頂點(diǎn)E,F分別在BC,CD邊上,高AG與正方形的邊長相等,求的度數(shù).
如圖,在中,,,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且,將繞點(diǎn)A逆時針旋轉(zhuǎn)至位置,連接NH,試判斷MN,ND,DH之間的數(shù)量關(guān)系,并說明理由.
在圖中,連接BD分別交AE,AF于點(diǎn)M,N,若,,,求AG,MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個判斷:①當(dāng)x>0時,y>0;②若a=-1,則b=3;③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)G、F分別在x軸和y軸上,當(dāng)m=2時,四邊形EDGF周長的最小值為,其中,判斷正確的序號是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2在第一象限內(nèi)經(jīng)過的整數(shù)點(diǎn)(橫坐標(biāo),縱坐標(biāo)都為整數(shù)的點(diǎn))依次為A1,A2,A3,…An,…,將拋物線y=x2沿直線L:y=x向上平移,得一系列拋物線,且滿足下列條件:
①拋物線的頂點(diǎn)M1,M2,M3,…Mn,…都在直線L:y=x上;
②拋物線依次經(jīng)過點(diǎn)A1,A2,A3…An,….
則M2016頂點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第天的售價(jià)與銷量的相關(guān)信息如下表:
觀察表格:根據(jù)表格解答下列問題:
0 | 1 | 2 | |
1 | |||
-3 | -3 |
(1)__________._____________.___________.
(2)在下圖的直角坐標(biāo)系中畫出函數(shù)的圖象,并根據(jù)圖象,直接寫出當(dāng)取什么實(shí)數(shù)時,不等式成立;
(3)該圖象與軸兩交點(diǎn)從左到右依次分別為、,與軸交點(diǎn)為,求過這三個點(diǎn)的外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:已知實(shí)數(shù)m,n滿足(2m2+n2+1)(2m2+n2﹣1)=80,試求2m2+n2的值
解:設(shè)2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±9因?yàn)?/span>2m2+n2≥0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
已知實(shí)數(shù)x,y滿足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一個簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19m),另外三邊利用學(xué)校現(xiàn)有總長38m的鐵欄圍成.
(1)若圍成的面積為180m,試求出自行車車棚的長和寬;
(2)能圍成的面積為200m自行車車棚嗎?如果能,請你給出設(shè)計(jì)方案;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點(diǎn)A與原點(diǎn)重合,點(diǎn)B在y軸的正半軸上,點(diǎn)D在x軸的負(fù)半軸上,將正方形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′與CD相交于點(diǎn)M,則點(diǎn)M的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com