【題目】如圖,拋物線y=-x2+2x+m+1x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=3;③拋物線上有兩點(diǎn)P(x1y1)和Qx2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)GF分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDGF周長的最小值為,其中,判斷正確的序號是(

A.①②B.②③C.①③D.②③④

【答案】B

【解析】

根據(jù)拋物線在x軸上方所對應(yīng)的自變量的范圍可判斷①;先求出拋物線的對稱軸,利用拋物線的對稱性求出b可判斷②;先求出拋物線的對稱軸,然后比較點(diǎn)P和Q到對稱軸距離的大小,然后可以確定函數(shù)值的大小,即可判斷③;先求出D、E兩點(diǎn)的坐標(biāo),然后求出符合題意的對稱點(diǎn)坐標(biāo)分別為(-1,4)(2,-3),然后根據(jù)勾股定理計(jì)算即可判斷④.

①當(dāng)x0時(shí),y不一定大于0,故錯(cuò)誤;

②對稱軸為1,當(dāng)a=-1,b=3,故正確;

1,∴

Q點(diǎn)距離對稱軸較遠(yuǎn),∴y1y2,故正確;

m=2時(shí),D(1,4),E(2,3),

可得出DE的對稱點(diǎn)為(-1,4)(2,-3),

四邊形DEFG的周長為,故錯(cuò)誤;

故答案為:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ly=kx+4與拋物線y=x2交于點(diǎn)A(x1,y1),B(x2y2).

(1)求:;的值.

(2)過點(diǎn)(0-4)作直線PQx軸,且過點(diǎn)AB分別作AMPQ于點(diǎn)M,BNPQ于點(diǎn)N,設(shè)直線ly=kx+4y軸于點(diǎn)F.求證:AF=AM=4+y1

(3)證明:+為定值,并求出該值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】愛動腦筋的小明在學(xué)過用配方法解一元二次方程后,他發(fā)現(xiàn)二次三項(xiàng)式也可以配方,從而解決一些問題.

例如:;因此 有最小值是1,只有當(dāng) 時(shí),才能得到這個(gè)式子的最小值1

同樣,因此有最大值是8,只有當(dāng) 時(shí),才能得到這個(gè)式子的最大值8

1)當(dāng)x   時(shí),代數(shù)式﹣2x32+5有最大值為   

2)當(dāng)x   時(shí),代數(shù)式2x2+4x+3有最小值為   

3)矩形自行車場地ABCD一邊靠墻(墻長10m),在ABBC邊各開一個(gè)1米寬的小門(不用木板),現(xiàn)有能圍成14m長的木板,當(dāng)AD長為多少時(shí),自行車場地的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCDDC8,AD6.

(1)如圖(1),點(diǎn)E在邊AD上且AE2,以點(diǎn)E為頂點(diǎn)作正方形EFGH,頂點(diǎn)F,H分別在矩形ABCD的邊ABCD上,連接CG,求∠HCG的度數(shù);

(2)請從AB兩題中任選一題解答,我選擇_____.

A.如圖(2),甲同學(xué)把矩形紙片ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形MPNQ,判斷并說明四邊形MPNQ的形狀.

B.如圖(3),乙同學(xué)把(1)中的正方形EFGH”改為菱形EFGH”,其余條件不變,此時(shí)點(diǎn)G落在矩形ABCD的外部,已知△CGH的面積是4,求菱形EFGH的邊長及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】義烏國際小商品博覽會某志愿小組有五名翻譯,其中一名只會翻譯阿拉伯語,三名只會翻譯英語,還有一名兩種語言都會翻譯若從中隨機(jī)挑選兩名組成一組,則該組能夠翻譯上述兩種語言的概率是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ABC=90°,BA=BC.將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段ADE是邊BC上的一動點(diǎn),連結(jié)DEAC于點(diǎn)F,連結(jié)BF.

(1)求證:FB=FD;

(2)如圖2,連結(jié)CD,點(diǎn)H在線段BE上(不含端點(diǎn)),且BH=CE,連結(jié)AHBF于點(diǎn)N.

①判斷AHBF的位置關(guān)系,并證明你的結(jié)論;

②連接CN.若AB=2,請直接寫出線段CN長度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線分別與x軸、y軸相交與點(diǎn)M、N,邊長為2的正方形OABC一個(gè)頂點(diǎn)O在坐標(biāo)系的原點(diǎn),直線ANMC相交與點(diǎn)P,若正方形繞著點(diǎn)O旋轉(zhuǎn)一周,則點(diǎn)P到點(diǎn)(0,2)長度的最小值是( )

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形AOBC中,點(diǎn)A的坐標(biāo)為(﹣2,1),OB5,則點(diǎn)B的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對稱軸是直線l,l與x軸交于點(diǎn)H.

(1)求該拋物線的解析式;

(2)若點(diǎn)P是該拋物線對稱軸l上的一個(gè)動點(diǎn),求PBC周長的最小值;

(3)如圖(2),若E是線段AD上的一個(gè)動點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,ADF的面積為S.

求S與m的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案